This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a closure. Theorem 6.5(a) of Munkres p. 95. (Contributed by NM, 22-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | elcls | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | 1 | cmclsopn | |- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( cls ` J ) ` S ) ) e. J ) |
| 3 | 2 | 3adant3 | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( X \ ( ( cls ` J ) ` S ) ) e. J ) |
| 4 | 3 | adantr | |- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ -. P e. ( ( cls ` J ) ` S ) ) -> ( X \ ( ( cls ` J ) ` S ) ) e. J ) |
| 5 | eldif | |- ( P e. ( X \ ( ( cls ` J ) ` S ) ) <-> ( P e. X /\ -. P e. ( ( cls ` J ) ` S ) ) ) |
|
| 6 | 5 | biimpri | |- ( ( P e. X /\ -. P e. ( ( cls ` J ) ` S ) ) -> P e. ( X \ ( ( cls ` J ) ` S ) ) ) |
| 7 | 6 | 3ad2antl3 | |- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ -. P e. ( ( cls ` J ) ` S ) ) -> P e. ( X \ ( ( cls ` J ) ` S ) ) ) |
| 8 | simpr | |- ( ( J e. Top /\ S C_ X ) -> S C_ X ) |
|
| 9 | 1 | sscls | |- ( ( J e. Top /\ S C_ X ) -> S C_ ( ( cls ` J ) ` S ) ) |
| 10 | 8 9 | ssind | |- ( ( J e. Top /\ S C_ X ) -> S C_ ( X i^i ( ( cls ` J ) ` S ) ) ) |
| 11 | dfin4 | |- ( X i^i ( ( cls ` J ) ` S ) ) = ( X \ ( X \ ( ( cls ` J ) ` S ) ) ) |
|
| 12 | 10 11 | sseqtrdi | |- ( ( J e. Top /\ S C_ X ) -> S C_ ( X \ ( X \ ( ( cls ` J ) ` S ) ) ) ) |
| 13 | reldisj | |- ( S C_ X -> ( ( S i^i ( X \ ( ( cls ` J ) ` S ) ) ) = (/) <-> S C_ ( X \ ( X \ ( ( cls ` J ) ` S ) ) ) ) ) |
|
| 14 | 13 | adantl | |- ( ( J e. Top /\ S C_ X ) -> ( ( S i^i ( X \ ( ( cls ` J ) ` S ) ) ) = (/) <-> S C_ ( X \ ( X \ ( ( cls ` J ) ` S ) ) ) ) ) |
| 15 | 12 14 | mpbird | |- ( ( J e. Top /\ S C_ X ) -> ( S i^i ( X \ ( ( cls ` J ) ` S ) ) ) = (/) ) |
| 16 | nne | |- ( -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) <-> ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) = (/) ) |
|
| 17 | incom | |- ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) = ( S i^i ( X \ ( ( cls ` J ) ` S ) ) ) |
|
| 18 | 17 | eqeq1i | |- ( ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) = (/) <-> ( S i^i ( X \ ( ( cls ` J ) ` S ) ) ) = (/) ) |
| 19 | 16 18 | bitri | |- ( -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) <-> ( S i^i ( X \ ( ( cls ` J ) ` S ) ) ) = (/) ) |
| 20 | 15 19 | sylibr | |- ( ( J e. Top /\ S C_ X ) -> -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) ) |
| 21 | 20 | 3adant3 | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) ) |
| 22 | 21 | adantr | |- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ -. P e. ( ( cls ` J ) ` S ) ) -> -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) ) |
| 23 | eleq2 | |- ( x = ( X \ ( ( cls ` J ) ` S ) ) -> ( P e. x <-> P e. ( X \ ( ( cls ` J ) ` S ) ) ) ) |
|
| 24 | ineq1 | |- ( x = ( X \ ( ( cls ` J ) ` S ) ) -> ( x i^i S ) = ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) ) |
|
| 25 | 24 | neeq1d | |- ( x = ( X \ ( ( cls ` J ) ` S ) ) -> ( ( x i^i S ) =/= (/) <-> ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) ) ) |
| 26 | 25 | notbid | |- ( x = ( X \ ( ( cls ` J ) ` S ) ) -> ( -. ( x i^i S ) =/= (/) <-> -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) ) ) |
| 27 | 23 26 | anbi12d | |- ( x = ( X \ ( ( cls ` J ) ` S ) ) -> ( ( P e. x /\ -. ( x i^i S ) =/= (/) ) <-> ( P e. ( X \ ( ( cls ` J ) ` S ) ) /\ -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) ) ) ) |
| 28 | 27 | rspcev | |- ( ( ( X \ ( ( cls ` J ) ` S ) ) e. J /\ ( P e. ( X \ ( ( cls ` J ) ` S ) ) /\ -. ( ( X \ ( ( cls ` J ) ` S ) ) i^i S ) =/= (/) ) ) -> E. x e. J ( P e. x /\ -. ( x i^i S ) =/= (/) ) ) |
| 29 | 4 7 22 28 | syl12anc | |- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ -. P e. ( ( cls ` J ) ` S ) ) -> E. x e. J ( P e. x /\ -. ( x i^i S ) =/= (/) ) ) |
| 30 | incom | |- ( S i^i x ) = ( x i^i S ) |
|
| 31 | 30 | eqeq1i | |- ( ( S i^i x ) = (/) <-> ( x i^i S ) = (/) ) |
| 32 | df-ne | |- ( ( x i^i S ) =/= (/) <-> -. ( x i^i S ) = (/) ) |
|
| 33 | 32 | con2bii | |- ( ( x i^i S ) = (/) <-> -. ( x i^i S ) =/= (/) ) |
| 34 | 31 33 | bitri | |- ( ( S i^i x ) = (/) <-> -. ( x i^i S ) =/= (/) ) |
| 35 | 1 | opncld | |- ( ( J e. Top /\ x e. J ) -> ( X \ x ) e. ( Clsd ` J ) ) |
| 36 | 35 | adantlr | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. J ) -> ( X \ x ) e. ( Clsd ` J ) ) |
| 37 | reldisj | |- ( S C_ X -> ( ( S i^i x ) = (/) <-> S C_ ( X \ x ) ) ) |
|
| 38 | 37 | biimpa | |- ( ( S C_ X /\ ( S i^i x ) = (/) ) -> S C_ ( X \ x ) ) |
| 39 | 38 | ad4ant24 | |- ( ( ( ( J e. Top /\ S C_ X ) /\ x e. J ) /\ ( S i^i x ) = (/) ) -> S C_ ( X \ x ) ) |
| 40 | 1 | clsss2 | |- ( ( ( X \ x ) e. ( Clsd ` J ) /\ S C_ ( X \ x ) ) -> ( ( cls ` J ) ` S ) C_ ( X \ x ) ) |
| 41 | 36 39 40 | syl2an2r | |- ( ( ( ( J e. Top /\ S C_ X ) /\ x e. J ) /\ ( S i^i x ) = (/) ) -> ( ( cls ` J ) ` S ) C_ ( X \ x ) ) |
| 42 | 41 | sseld | |- ( ( ( ( J e. Top /\ S C_ X ) /\ x e. J ) /\ ( S i^i x ) = (/) ) -> ( P e. ( ( cls ` J ) ` S ) -> P e. ( X \ x ) ) ) |
| 43 | eldifn | |- ( P e. ( X \ x ) -> -. P e. x ) |
|
| 44 | 42 43 | syl6 | |- ( ( ( ( J e. Top /\ S C_ X ) /\ x e. J ) /\ ( S i^i x ) = (/) ) -> ( P e. ( ( cls ` J ) ` S ) -> -. P e. x ) ) |
| 45 | 44 | con2d | |- ( ( ( ( J e. Top /\ S C_ X ) /\ x e. J ) /\ ( S i^i x ) = (/) ) -> ( P e. x -> -. P e. ( ( cls ` J ) ` S ) ) ) |
| 46 | 34 45 | sylan2br | |- ( ( ( ( J e. Top /\ S C_ X ) /\ x e. J ) /\ -. ( x i^i S ) =/= (/) ) -> ( P e. x -> -. P e. ( ( cls ` J ) ` S ) ) ) |
| 47 | 46 | exp31 | |- ( ( J e. Top /\ S C_ X ) -> ( x e. J -> ( -. ( x i^i S ) =/= (/) -> ( P e. x -> -. P e. ( ( cls ` J ) ` S ) ) ) ) ) |
| 48 | 47 | com34 | |- ( ( J e. Top /\ S C_ X ) -> ( x e. J -> ( P e. x -> ( -. ( x i^i S ) =/= (/) -> -. P e. ( ( cls ` J ) ` S ) ) ) ) ) |
| 49 | 48 | imp4a | |- ( ( J e. Top /\ S C_ X ) -> ( x e. J -> ( ( P e. x /\ -. ( x i^i S ) =/= (/) ) -> -. P e. ( ( cls ` J ) ` S ) ) ) ) |
| 50 | 49 | rexlimdv | |- ( ( J e. Top /\ S C_ X ) -> ( E. x e. J ( P e. x /\ -. ( x i^i S ) =/= (/) ) -> -. P e. ( ( cls ` J ) ` S ) ) ) |
| 51 | 50 | imp | |- ( ( ( J e. Top /\ S C_ X ) /\ E. x e. J ( P e. x /\ -. ( x i^i S ) =/= (/) ) ) -> -. P e. ( ( cls ` J ) ` S ) ) |
| 52 | 51 | 3adantl3 | |- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ E. x e. J ( P e. x /\ -. ( x i^i S ) =/= (/) ) ) -> -. P e. ( ( cls ` J ) ` S ) ) |
| 53 | 29 52 | impbida | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( -. P e. ( ( cls ` J ) ` S ) <-> E. x e. J ( P e. x /\ -. ( x i^i S ) =/= (/) ) ) ) |
| 54 | rexanali | |- ( E. x e. J ( P e. x /\ -. ( x i^i S ) =/= (/) ) <-> -. A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) |
|
| 55 | 53 54 | bitrdi | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( -. P e. ( ( cls ` J ) ` S ) <-> -. A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) ) |
| 56 | 55 | con4bid | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) ) |