This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Entries of an identity matrix, deduction form. (Contributed by Stefan O'Rear, 10-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1.a | |- A = ( N Mat R ) |
|
| mat1.o | |- .1. = ( 1r ` R ) |
||
| mat1.z | |- .0. = ( 0g ` R ) |
||
| mat1ov.n | |- ( ph -> N e. Fin ) |
||
| mat1ov.r | |- ( ph -> R e. Ring ) |
||
| mat1ov.i | |- ( ph -> I e. N ) |
||
| mat1ov.j | |- ( ph -> J e. N ) |
||
| mat1ov.u | |- U = ( 1r ` A ) |
||
| Assertion | mat1ov | |- ( ph -> ( I U J ) = if ( I = J , .1. , .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1.a | |- A = ( N Mat R ) |
|
| 2 | mat1.o | |- .1. = ( 1r ` R ) |
|
| 3 | mat1.z | |- .0. = ( 0g ` R ) |
|
| 4 | mat1ov.n | |- ( ph -> N e. Fin ) |
|
| 5 | mat1ov.r | |- ( ph -> R e. Ring ) |
|
| 6 | mat1ov.i | |- ( ph -> I e. N ) |
|
| 7 | mat1ov.j | |- ( ph -> J e. N ) |
|
| 8 | mat1ov.u | |- U = ( 1r ` A ) |
|
| 9 | 1 2 3 | mat1 | |- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |
| 10 | 4 5 9 | syl2anc | |- ( ph -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |
| 11 | 8 10 | eqtrid | |- ( ph -> U = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |
| 12 | eqeq12 | |- ( ( i = I /\ j = J ) -> ( i = j <-> I = J ) ) |
|
| 13 | 12 | ifbid | |- ( ( i = I /\ j = J ) -> if ( i = j , .1. , .0. ) = if ( I = J , .1. , .0. ) ) |
| 14 | 13 | adantl | |- ( ( ph /\ ( i = I /\ j = J ) ) -> if ( i = j , .1. , .0. ) = if ( I = J , .1. , .0. ) ) |
| 15 | 2 | fvexi | |- .1. e. _V |
| 16 | 3 | fvexi | |- .0. e. _V |
| 17 | 15 16 | ifex | |- if ( I = J , .1. , .0. ) e. _V |
| 18 | 17 | a1i | |- ( ph -> if ( I = J , .1. , .0. ) e. _V ) |
| 19 | 11 14 6 7 18 | ovmpod | |- ( ph -> ( I U J ) = if ( I = J , .1. , .0. ) ) |