This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetuni.a | |- A = ( N Mat R ) |
|
| mdetuni.b | |- B = ( Base ` A ) |
||
| mdetuni.k | |- K = ( Base ` R ) |
||
| mdetuni.0g | |- .0. = ( 0g ` R ) |
||
| mdetuni.1r | |- .1. = ( 1r ` R ) |
||
| mdetuni.pg | |- .+ = ( +g ` R ) |
||
| mdetuni.tg | |- .x. = ( .r ` R ) |
||
| mdetuni.n | |- ( ph -> N e. Fin ) |
||
| mdetuni.r | |- ( ph -> R e. Ring ) |
||
| mdetuni.ff | |- ( ph -> D : B --> K ) |
||
| mdetuni.al | |- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
||
| mdetuni.li | |- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
||
| mdetuni.sc | |- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
||
| mdetunilem2.ph | |- ( ps -> ph ) |
||
| mdetunilem2.eg | |- ( ps -> ( E e. N /\ G e. N /\ E =/= G ) ) |
||
| mdetunilem2.f | |- ( ( ps /\ b e. N ) -> F e. K ) |
||
| mdetunilem2.h | |- ( ( ps /\ a e. N /\ b e. N ) -> H e. K ) |
||
| Assertion | mdetunilem2 | |- ( ps -> ( D ` ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetuni.a | |- A = ( N Mat R ) |
|
| 2 | mdetuni.b | |- B = ( Base ` A ) |
|
| 3 | mdetuni.k | |- K = ( Base ` R ) |
|
| 4 | mdetuni.0g | |- .0. = ( 0g ` R ) |
|
| 5 | mdetuni.1r | |- .1. = ( 1r ` R ) |
|
| 6 | mdetuni.pg | |- .+ = ( +g ` R ) |
|
| 7 | mdetuni.tg | |- .x. = ( .r ` R ) |
|
| 8 | mdetuni.n | |- ( ph -> N e. Fin ) |
|
| 9 | mdetuni.r | |- ( ph -> R e. Ring ) |
|
| 10 | mdetuni.ff | |- ( ph -> D : B --> K ) |
|
| 11 | mdetuni.al | |- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
|
| 12 | mdetuni.li | |- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
|
| 13 | mdetuni.sc | |- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
|
| 14 | mdetunilem2.ph | |- ( ps -> ph ) |
|
| 15 | mdetunilem2.eg | |- ( ps -> ( E e. N /\ G e. N /\ E =/= G ) ) |
|
| 16 | mdetunilem2.f | |- ( ( ps /\ b e. N ) -> F e. K ) |
|
| 17 | mdetunilem2.h | |- ( ( ps /\ a e. N /\ b e. N ) -> H e. K ) |
|
| 18 | 14 8 | syl | |- ( ps -> N e. Fin ) |
| 19 | 14 9 | syl | |- ( ps -> R e. Ring ) |
| 20 | 16 | 3adant2 | |- ( ( ps /\ a e. N /\ b e. N ) -> F e. K ) |
| 21 | 20 17 | ifcld | |- ( ( ps /\ a e. N /\ b e. N ) -> if ( a = G , F , H ) e. K ) |
| 22 | 20 21 | ifcld | |- ( ( ps /\ a e. N /\ b e. N ) -> if ( a = E , F , if ( a = G , F , H ) ) e. K ) |
| 23 | 1 3 2 18 19 22 | matbas2d | |- ( ps -> ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) e. B ) |
| 24 | eqidd | |- ( ( ps /\ w e. N ) -> ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) = ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) ) |
|
| 25 | iftrue | |- ( a = E -> if ( a = E , F , if ( a = G , F , H ) ) = F ) |
|
| 26 | csbeq1a | |- ( b = w -> F = [_ w / b ]_ F ) |
|
| 27 | 25 26 | sylan9eq | |- ( ( a = E /\ b = w ) -> if ( a = E , F , if ( a = G , F , H ) ) = [_ w / b ]_ F ) |
| 28 | 27 | adantl | |- ( ( ( ps /\ w e. N ) /\ ( a = E /\ b = w ) ) -> if ( a = E , F , if ( a = G , F , H ) ) = [_ w / b ]_ F ) |
| 29 | eqidd | |- ( ( ( ps /\ w e. N ) /\ a = E ) -> N = N ) |
|
| 30 | 15 | simp1d | |- ( ps -> E e. N ) |
| 31 | 30 | adantr | |- ( ( ps /\ w e. N ) -> E e. N ) |
| 32 | simpr | |- ( ( ps /\ w e. N ) -> w e. N ) |
|
| 33 | nfv | |- F/ b ( ps /\ w e. N ) |
|
| 34 | nfcsb1v | |- F/_ b [_ w / b ]_ F |
|
| 35 | 34 | nfel1 | |- F/ b [_ w / b ]_ F e. K |
| 36 | 33 35 | nfim | |- F/ b ( ( ps /\ w e. N ) -> [_ w / b ]_ F e. K ) |
| 37 | eleq1w | |- ( b = w -> ( b e. N <-> w e. N ) ) |
|
| 38 | 37 | anbi2d | |- ( b = w -> ( ( ps /\ b e. N ) <-> ( ps /\ w e. N ) ) ) |
| 39 | 26 | eleq1d | |- ( b = w -> ( F e. K <-> [_ w / b ]_ F e. K ) ) |
| 40 | 38 39 | imbi12d | |- ( b = w -> ( ( ( ps /\ b e. N ) -> F e. K ) <-> ( ( ps /\ w e. N ) -> [_ w / b ]_ F e. K ) ) ) |
| 41 | 36 40 16 | chvarfv | |- ( ( ps /\ w e. N ) -> [_ w / b ]_ F e. K ) |
| 42 | nfv | |- F/ a ( ps /\ w e. N ) |
|
| 43 | nfcv | |- F/_ b E |
|
| 44 | nfcv | |- F/_ a w |
|
| 45 | nfcv | |- F/_ a [_ w / b ]_ F |
|
| 46 | 24 28 29 31 32 41 42 33 43 44 45 34 | ovmpodxf | |- ( ( ps /\ w e. N ) -> ( E ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) = [_ w / b ]_ F ) |
| 47 | 15 | simp3d | |- ( ps -> E =/= G ) |
| 48 | 47 | adantr | |- ( ( ps /\ w e. N ) -> E =/= G ) |
| 49 | neeq2 | |- ( a = G -> ( E =/= a <-> E =/= G ) ) |
|
| 50 | 48 49 | syl5ibrcom | |- ( ( ps /\ w e. N ) -> ( a = G -> E =/= a ) ) |
| 51 | 50 | imp | |- ( ( ( ps /\ w e. N ) /\ a = G ) -> E =/= a ) |
| 52 | 51 | necomd | |- ( ( ( ps /\ w e. N ) /\ a = G ) -> a =/= E ) |
| 53 | 52 | neneqd | |- ( ( ( ps /\ w e. N ) /\ a = G ) -> -. a = E ) |
| 54 | 53 | adantrr | |- ( ( ( ps /\ w e. N ) /\ ( a = G /\ b = w ) ) -> -. a = E ) |
| 55 | 54 | iffalsed | |- ( ( ( ps /\ w e. N ) /\ ( a = G /\ b = w ) ) -> if ( a = E , F , if ( a = G , F , H ) ) = if ( a = G , F , H ) ) |
| 56 | iftrue | |- ( a = G -> if ( a = G , F , H ) = F ) |
|
| 57 | 56 26 | sylan9eq | |- ( ( a = G /\ b = w ) -> if ( a = G , F , H ) = [_ w / b ]_ F ) |
| 58 | 57 | adantl | |- ( ( ( ps /\ w e. N ) /\ ( a = G /\ b = w ) ) -> if ( a = G , F , H ) = [_ w / b ]_ F ) |
| 59 | 55 58 | eqtrd | |- ( ( ( ps /\ w e. N ) /\ ( a = G /\ b = w ) ) -> if ( a = E , F , if ( a = G , F , H ) ) = [_ w / b ]_ F ) |
| 60 | eqidd | |- ( ( ( ps /\ w e. N ) /\ a = G ) -> N = N ) |
|
| 61 | 15 | simp2d | |- ( ps -> G e. N ) |
| 62 | 61 | adantr | |- ( ( ps /\ w e. N ) -> G e. N ) |
| 63 | nfcv | |- F/_ b G |
|
| 64 | 24 59 60 62 32 41 42 33 63 44 45 34 | ovmpodxf | |- ( ( ps /\ w e. N ) -> ( G ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) = [_ w / b ]_ F ) |
| 65 | 46 64 | eqtr4d | |- ( ( ps /\ w e. N ) -> ( E ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) = ( G ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) ) |
| 66 | 65 | ralrimiva | |- ( ps -> A. w e. N ( E ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) = ( G ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) ) |
| 67 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | mdetunilem1 | |- ( ( ( ph /\ ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) e. B /\ A. w e. N ( E ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) = ( G ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) ) /\ ( E e. N /\ G e. N /\ E =/= G ) ) -> ( D ` ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) ) = .0. ) |
| 68 | 14 23 66 15 67 | syl31anc | |- ( ps -> ( D ` ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) ) = .0. ) |