This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mbfimaicc | |- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( `' F " ( B [,] C ) ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre | |- ( ( B e. RR /\ C e. RR ) -> ( B [,] C ) C_ RR ) |
|
| 2 | 1 | adantl | |- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( B [,] C ) C_ RR ) |
| 3 | dfss4 | |- ( ( B [,] C ) C_ RR <-> ( RR \ ( RR \ ( B [,] C ) ) ) = ( B [,] C ) ) |
|
| 4 | 2 3 | sylib | |- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( RR \ ( RR \ ( B [,] C ) ) ) = ( B [,] C ) ) |
| 5 | difreicc | |- ( ( B e. RR /\ C e. RR ) -> ( RR \ ( B [,] C ) ) = ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) |
|
| 6 | 5 | adantl | |- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( RR \ ( B [,] C ) ) = ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) |
| 7 | 6 | difeq2d | |- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( RR \ ( RR \ ( B [,] C ) ) ) = ( RR \ ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) |
| 8 | 4 7 | eqtr3d | |- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( B [,] C ) = ( RR \ ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) |
| 9 | 8 | imaeq2d | |- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( `' F " ( B [,] C ) ) = ( `' F " ( RR \ ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) ) |
| 10 | ffun | |- ( F : A --> RR -> Fun F ) |
|
| 11 | funcnvcnv | |- ( Fun F -> Fun `' `' F ) |
|
| 12 | 10 11 | syl | |- ( F : A --> RR -> Fun `' `' F ) |
| 13 | 12 | ad2antlr | |- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> Fun `' `' F ) |
| 14 | imadif | |- ( Fun `' `' F -> ( `' F " ( RR \ ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) = ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) ) |
|
| 15 | 13 14 | syl | |- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( `' F " ( RR \ ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) = ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) ) |
| 16 | 9 15 | eqtrd | |- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( `' F " ( B [,] C ) ) = ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) ) |
| 17 | fimacnv | |- ( F : A --> RR -> ( `' F " RR ) = A ) |
|
| 18 | 17 | adantl | |- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " RR ) = A ) |
| 19 | mbfdm | |- ( F e. MblFn -> dom F e. dom vol ) |
|
| 20 | fdm | |- ( F : A --> RR -> dom F = A ) |
|
| 21 | 20 | eleq1d | |- ( F : A --> RR -> ( dom F e. dom vol <-> A e. dom vol ) ) |
| 22 | 21 | biimpac | |- ( ( dom F e. dom vol /\ F : A --> RR ) -> A e. dom vol ) |
| 23 | 19 22 | sylan | |- ( ( F e. MblFn /\ F : A --> RR ) -> A e. dom vol ) |
| 24 | 18 23 | eqeltrd | |- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " RR ) e. dom vol ) |
| 25 | imaundi | |- ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) = ( ( `' F " ( -oo (,) B ) ) u. ( `' F " ( C (,) +oo ) ) ) |
|
| 26 | mbfima | |- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( -oo (,) B ) ) e. dom vol ) |
|
| 27 | mbfima | |- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( C (,) +oo ) ) e. dom vol ) |
|
| 28 | unmbl | |- ( ( ( `' F " ( -oo (,) B ) ) e. dom vol /\ ( `' F " ( C (,) +oo ) ) e. dom vol ) -> ( ( `' F " ( -oo (,) B ) ) u. ( `' F " ( C (,) +oo ) ) ) e. dom vol ) |
|
| 29 | 26 27 28 | syl2anc | |- ( ( F e. MblFn /\ F : A --> RR ) -> ( ( `' F " ( -oo (,) B ) ) u. ( `' F " ( C (,) +oo ) ) ) e. dom vol ) |
| 30 | 25 29 | eqeltrid | |- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) e. dom vol ) |
| 31 | difmbl | |- ( ( ( `' F " RR ) e. dom vol /\ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) e. dom vol ) -> ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) e. dom vol ) |
|
| 32 | 24 30 31 | syl2anc | |- ( ( F e. MblFn /\ F : A --> RR ) -> ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) e. dom vol ) |
| 33 | 32 | adantr | |- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) e. dom vol ) |
| 34 | 16 33 | eqeltrd | |- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( `' F " ( B [,] C ) ) e. dom vol ) |