This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mbfimaicc | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ◡ 𝐹 “ ( 𝐵 [,] 𝐶 ) ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
| 3 | dfss4 | ⊢ ( ( 𝐵 [,] 𝐶 ) ⊆ ℝ ↔ ( ℝ ∖ ( ℝ ∖ ( 𝐵 [,] 𝐶 ) ) ) = ( 𝐵 [,] 𝐶 ) ) | |
| 4 | 2 3 | sylib | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ℝ ∖ ( ℝ ∖ ( 𝐵 [,] 𝐶 ) ) ) = ( 𝐵 [,] 𝐶 ) ) |
| 5 | difreicc | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ℝ ∖ ( 𝐵 [,] 𝐶 ) ) = ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ℝ ∖ ( 𝐵 [,] 𝐶 ) ) = ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) |
| 7 | 6 | difeq2d | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ℝ ∖ ( ℝ ∖ ( 𝐵 [,] 𝐶 ) ) ) = ( ℝ ∖ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) |
| 8 | 4 7 | eqtr3d | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 [,] 𝐶 ) = ( ℝ ∖ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) |
| 9 | 8 | imaeq2d | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ◡ 𝐹 “ ( 𝐵 [,] 𝐶 ) ) = ( ◡ 𝐹 “ ( ℝ ∖ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ) |
| 10 | ffun | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → Fun 𝐹 ) | |
| 11 | funcnvcnv | ⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → Fun ◡ ◡ 𝐹 ) |
| 13 | 12 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → Fun ◡ ◡ 𝐹 ) |
| 14 | imadif | ⊢ ( Fun ◡ ◡ 𝐹 → ( ◡ 𝐹 “ ( ℝ ∖ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) = ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ◡ 𝐹 “ ( ℝ ∖ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) = ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ) |
| 16 | 9 15 | eqtrd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ◡ 𝐹 “ ( 𝐵 [,] 𝐶 ) ) = ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ) |
| 17 | fimacnv | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( ◡ 𝐹 “ ℝ ) = 𝐴 ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ℝ ) = 𝐴 ) |
| 19 | mbfdm | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) | |
| 20 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → dom 𝐹 = 𝐴 ) | |
| 21 | 20 | eleq1d | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol ) ) |
| 22 | 21 | biimpac | ⊢ ( ( dom 𝐹 ∈ dom vol ∧ 𝐹 : 𝐴 ⟶ ℝ ) → 𝐴 ∈ dom vol ) |
| 23 | 19 22 | sylan | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → 𝐴 ∈ dom vol ) |
| 24 | 18 23 | eqeltrd | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) |
| 25 | imaundi | ⊢ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) = ( ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ∪ ( ◡ 𝐹 “ ( 𝐶 (,) +∞ ) ) ) | |
| 26 | mbfima | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ∈ dom vol ) | |
| 27 | mbfima | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( 𝐶 (,) +∞ ) ) ∈ dom vol ) | |
| 28 | unmbl | ⊢ ( ( ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( 𝐶 (,) +∞ ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ∪ ( ◡ 𝐹 “ ( 𝐶 (,) +∞ ) ) ) ∈ dom vol ) | |
| 29 | 26 27 28 | syl2anc | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ∪ ( ◡ 𝐹 “ ( 𝐶 (,) +∞ ) ) ) ∈ dom vol ) |
| 30 | 25 29 | eqeltrid | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ∈ dom vol ) |
| 31 | difmbl | ⊢ ( ( ( ◡ 𝐹 “ ℝ ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ∈ dom vol ) | |
| 32 | 24 30 31 | syl2anc | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ∈ dom vol ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( -∞ (,) 𝐵 ) ∪ ( 𝐶 (,) +∞ ) ) ) ) ∈ dom vol ) |
| 34 | 16 33 | eqeltrd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ◡ 𝐹 “ ( 𝐵 [,] 𝐶 ) ) ∈ dom vol ) |