This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class difference of RR and a closed interval. (Contributed by FL, 18-Jun-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difreicc | |- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( A [,] B ) ) = ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | |- ( x e. ( RR \ ( A [,] B ) ) <-> ( x e. RR /\ -. x e. ( A [,] B ) ) ) |
|
| 2 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 3 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 4 | elicc1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A [,] B ) <-> ( x e. RR* /\ A <_ x /\ x <_ B ) ) ) |
|
| 5 | 2 3 4 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR* /\ A <_ x /\ x <_ B ) ) ) |
| 6 | 5 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR* /\ A <_ x /\ x <_ B ) ) ) |
| 7 | 6 | notbid | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( -. x e. ( A [,] B ) <-> -. ( x e. RR* /\ A <_ x /\ x <_ B ) ) ) |
| 8 | 3anass | |- ( ( x e. RR* /\ A <_ x /\ x <_ B ) <-> ( x e. RR* /\ ( A <_ x /\ x <_ B ) ) ) |
|
| 9 | 8 | notbii | |- ( -. ( x e. RR* /\ A <_ x /\ x <_ B ) <-> -. ( x e. RR* /\ ( A <_ x /\ x <_ B ) ) ) |
| 10 | ianor | |- ( -. ( x e. RR* /\ ( A <_ x /\ x <_ B ) ) <-> ( -. x e. RR* \/ -. ( A <_ x /\ x <_ B ) ) ) |
|
| 11 | rexr | |- ( x e. RR -> x e. RR* ) |
|
| 12 | 11 | pm2.24d | |- ( x e. RR -> ( -. x e. RR* -> ( x e. ( -oo (,) A ) \/ x e. ( B (,) +oo ) ) ) ) |
| 13 | 12 | adantl | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( -. x e. RR* -> ( x e. ( -oo (,) A ) \/ x e. ( B (,) +oo ) ) ) ) |
| 14 | ianor | |- ( -. ( A <_ x /\ x <_ B ) <-> ( -. A <_ x \/ -. x <_ B ) ) |
|
| 15 | 11 | ad2antlr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) /\ -. A <_ x ) -> x e. RR* ) |
| 16 | mnflt | |- ( x e. RR -> -oo < x ) |
|
| 17 | 16 | ad2antlr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) /\ -. A <_ x ) -> -oo < x ) |
| 18 | simpr | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> x e. RR ) |
|
| 19 | simpll | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> A e. RR ) |
|
| 20 | ltnle | |- ( ( x e. RR /\ A e. RR ) -> ( x < A <-> -. A <_ x ) ) |
|
| 21 | 20 | bicomd | |- ( ( x e. RR /\ A e. RR ) -> ( -. A <_ x <-> x < A ) ) |
| 22 | 18 19 21 | syl2anc | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( -. A <_ x <-> x < A ) ) |
| 23 | 22 | biimpa | |- ( ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) /\ -. A <_ x ) -> x < A ) |
| 24 | mnfxr | |- -oo e. RR* |
|
| 25 | 2 | ad3antrrr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) /\ -. A <_ x ) -> A e. RR* ) |
| 26 | elioo1 | |- ( ( -oo e. RR* /\ A e. RR* ) -> ( x e. ( -oo (,) A ) <-> ( x e. RR* /\ -oo < x /\ x < A ) ) ) |
|
| 27 | 24 25 26 | sylancr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) /\ -. A <_ x ) -> ( x e. ( -oo (,) A ) <-> ( x e. RR* /\ -oo < x /\ x < A ) ) ) |
| 28 | 15 17 23 27 | mpbir3and | |- ( ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) /\ -. A <_ x ) -> x e. ( -oo (,) A ) ) |
| 29 | 28 | ex | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( -. A <_ x -> x e. ( -oo (,) A ) ) ) |
| 30 | ltnle | |- ( ( B e. RR /\ x e. RR ) -> ( B < x <-> -. x <_ B ) ) |
|
| 31 | 30 | adantll | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( B < x <-> -. x <_ B ) ) |
| 32 | 11 | ad2antlr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) /\ B < x ) -> x e. RR* ) |
| 33 | simpr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) /\ B < x ) -> B < x ) |
|
| 34 | ltpnf | |- ( x e. RR -> x < +oo ) |
|
| 35 | 34 | ad2antlr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) /\ B < x ) -> x < +oo ) |
| 36 | 3 | ad3antlr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) /\ B < x ) -> B e. RR* ) |
| 37 | pnfxr | |- +oo e. RR* |
|
| 38 | elioo1 | |- ( ( B e. RR* /\ +oo e. RR* ) -> ( x e. ( B (,) +oo ) <-> ( x e. RR* /\ B < x /\ x < +oo ) ) ) |
|
| 39 | 36 37 38 | sylancl | |- ( ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) /\ B < x ) -> ( x e. ( B (,) +oo ) <-> ( x e. RR* /\ B < x /\ x < +oo ) ) ) |
| 40 | 32 33 35 39 | mpbir3and | |- ( ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) /\ B < x ) -> x e. ( B (,) +oo ) ) |
| 41 | 40 | ex | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( B < x -> x e. ( B (,) +oo ) ) ) |
| 42 | 31 41 | sylbird | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( -. x <_ B -> x e. ( B (,) +oo ) ) ) |
| 43 | 29 42 | orim12d | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( ( -. A <_ x \/ -. x <_ B ) -> ( x e. ( -oo (,) A ) \/ x e. ( B (,) +oo ) ) ) ) |
| 44 | 14 43 | biimtrid | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( -. ( A <_ x /\ x <_ B ) -> ( x e. ( -oo (,) A ) \/ x e. ( B (,) +oo ) ) ) ) |
| 45 | 13 44 | jaod | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( ( -. x e. RR* \/ -. ( A <_ x /\ x <_ B ) ) -> ( x e. ( -oo (,) A ) \/ x e. ( B (,) +oo ) ) ) ) |
| 46 | 10 45 | biimtrid | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( -. ( x e. RR* /\ ( A <_ x /\ x <_ B ) ) -> ( x e. ( -oo (,) A ) \/ x e. ( B (,) +oo ) ) ) ) |
| 47 | 9 46 | biimtrid | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( -. ( x e. RR* /\ A <_ x /\ x <_ B ) -> ( x e. ( -oo (,) A ) \/ x e. ( B (,) +oo ) ) ) ) |
| 48 | 7 47 | sylbid | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( -. x e. ( A [,] B ) -> ( x e. ( -oo (,) A ) \/ x e. ( B (,) +oo ) ) ) ) |
| 49 | 48 | expimpd | |- ( ( A e. RR /\ B e. RR ) -> ( ( x e. RR /\ -. x e. ( A [,] B ) ) -> ( x e. ( -oo (,) A ) \/ x e. ( B (,) +oo ) ) ) ) |
| 50 | elun | |- ( x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) <-> ( x e. ( -oo (,) A ) \/ x e. ( B (,) +oo ) ) ) |
|
| 51 | 49 50 | imbitrrdi | |- ( ( A e. RR /\ B e. RR ) -> ( ( x e. RR /\ -. x e. ( A [,] B ) ) -> x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) ) |
| 52 | ioossre | |- ( -oo (,) A ) C_ RR |
|
| 53 | ioossre | |- ( B (,) +oo ) C_ RR |
|
| 54 | 52 53 | unssi | |- ( ( -oo (,) A ) u. ( B (,) +oo ) ) C_ RR |
| 55 | 54 | sseli | |- ( x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) -> x e. RR ) |
| 56 | 55 | adantl | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) -> x e. RR ) |
| 57 | elioo2 | |- ( ( -oo e. RR* /\ A e. RR* ) -> ( x e. ( -oo (,) A ) <-> ( x e. RR /\ -oo < x /\ x < A ) ) ) |
|
| 58 | 24 2 57 | sylancr | |- ( A e. RR -> ( x e. ( -oo (,) A ) <-> ( x e. RR /\ -oo < x /\ x < A ) ) ) |
| 59 | 58 | adantr | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( -oo (,) A ) <-> ( x e. RR /\ -oo < x /\ x < A ) ) ) |
| 60 | 20 | biimpd | |- ( ( x e. RR /\ A e. RR ) -> ( x < A -> -. A <_ x ) ) |
| 61 | 60 | ex | |- ( x e. RR -> ( A e. RR -> ( x < A -> -. A <_ x ) ) ) |
| 62 | 61 | a1i | |- ( -oo < x -> ( x e. RR -> ( A e. RR -> ( x < A -> -. A <_ x ) ) ) ) |
| 63 | 62 | com13 | |- ( A e. RR -> ( x e. RR -> ( -oo < x -> ( x < A -> -. A <_ x ) ) ) ) |
| 64 | 63 | adantr | |- ( ( A e. RR /\ B e. RR ) -> ( x e. RR -> ( -oo < x -> ( x < A -> -. A <_ x ) ) ) ) |
| 65 | 64 | 3impd | |- ( ( A e. RR /\ B e. RR ) -> ( ( x e. RR /\ -oo < x /\ x < A ) -> -. A <_ x ) ) |
| 66 | 59 65 | sylbid | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( -oo (,) A ) -> -. A <_ x ) ) |
| 67 | 3 | adantl | |- ( ( A e. RR /\ B e. RR ) -> B e. RR* ) |
| 68 | 67 37 38 | sylancl | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( B (,) +oo ) <-> ( x e. RR* /\ B < x /\ x < +oo ) ) ) |
| 69 | xrltnle | |- ( ( B e. RR* /\ x e. RR* ) -> ( B < x <-> -. x <_ B ) ) |
|
| 70 | 69 | biimpd | |- ( ( B e. RR* /\ x e. RR* ) -> ( B < x -> -. x <_ B ) ) |
| 71 | 70 | ex | |- ( B e. RR* -> ( x e. RR* -> ( B < x -> -. x <_ B ) ) ) |
| 72 | 71 | a1ddd | |- ( B e. RR* -> ( x e. RR* -> ( B < x -> ( x < +oo -> -. x <_ B ) ) ) ) |
| 73 | 3 72 | syl | |- ( B e. RR -> ( x e. RR* -> ( B < x -> ( x < +oo -> -. x <_ B ) ) ) ) |
| 74 | 73 | adantl | |- ( ( A e. RR /\ B e. RR ) -> ( x e. RR* -> ( B < x -> ( x < +oo -> -. x <_ B ) ) ) ) |
| 75 | 74 | 3impd | |- ( ( A e. RR /\ B e. RR ) -> ( ( x e. RR* /\ B < x /\ x < +oo ) -> -. x <_ B ) ) |
| 76 | 68 75 | sylbid | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( B (,) +oo ) -> -. x <_ B ) ) |
| 77 | 66 76 | orim12d | |- ( ( A e. RR /\ B e. RR ) -> ( ( x e. ( -oo (,) A ) \/ x e. ( B (,) +oo ) ) -> ( -. A <_ x \/ -. x <_ B ) ) ) |
| 78 | 50 77 | biimtrid | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) -> ( -. A <_ x \/ -. x <_ B ) ) ) |
| 79 | 78 | imp | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) -> ( -. A <_ x \/ -. x <_ B ) ) |
| 80 | 79 14 | sylibr | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) -> -. ( A <_ x /\ x <_ B ) ) |
| 81 | 80 | intnand | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) -> -. ( x e. RR* /\ ( A <_ x /\ x <_ B ) ) ) |
| 82 | 81 8 | sylnibr | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) -> -. ( x e. RR* /\ A <_ x /\ x <_ B ) ) |
| 83 | 2 3 | anim12i | |- ( ( A e. RR /\ B e. RR ) -> ( A e. RR* /\ B e. RR* ) ) |
| 84 | 83 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) -> ( A e. RR* /\ B e. RR* ) ) |
| 85 | 4 | notbid | |- ( ( A e. RR* /\ B e. RR* ) -> ( -. x e. ( A [,] B ) <-> -. ( x e. RR* /\ A <_ x /\ x <_ B ) ) ) |
| 86 | 84 85 | syl | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) -> ( -. x e. ( A [,] B ) <-> -. ( x e. RR* /\ A <_ x /\ x <_ B ) ) ) |
| 87 | 82 86 | mpbird | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) -> -. x e. ( A [,] B ) ) |
| 88 | 56 87 | jca | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) -> ( x e. RR /\ -. x e. ( A [,] B ) ) ) |
| 89 | 88 | ex | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) -> ( x e. RR /\ -. x e. ( A [,] B ) ) ) ) |
| 90 | 51 89 | impbid | |- ( ( A e. RR /\ B e. RR ) -> ( ( x e. RR /\ -. x e. ( A [,] B ) ) <-> x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) ) |
| 91 | 1 90 | bitrid | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( RR \ ( A [,] B ) ) <-> x e. ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) ) |
| 92 | 91 | eqrdv | |- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( A [,] B ) ) = ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) |