This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One-half of any positive fraction exists. Lemma for Proposition 9-2.6(i) of Gleason p. 120. (Contributed by NM, 16-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | halfnq | |- ( A e. Q. -> E. x ( x +Q x ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distrnq | |- ( A .Q ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) = ( ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) +Q ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) |
|
| 2 | distrnq | |- ( ( 1Q +Q 1Q ) .Q ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) = ( ( ( 1Q +Q 1Q ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) +Q ( ( 1Q +Q 1Q ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) |
|
| 3 | 1nq | |- 1Q e. Q. |
|
| 4 | addclnq | |- ( ( 1Q e. Q. /\ 1Q e. Q. ) -> ( 1Q +Q 1Q ) e. Q. ) |
|
| 5 | 3 3 4 | mp2an | |- ( 1Q +Q 1Q ) e. Q. |
| 6 | recidnq | |- ( ( 1Q +Q 1Q ) e. Q. -> ( ( 1Q +Q 1Q ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) = 1Q ) |
|
| 7 | 5 6 | ax-mp | |- ( ( 1Q +Q 1Q ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) = 1Q |
| 8 | 7 7 | oveq12i | |- ( ( ( 1Q +Q 1Q ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) +Q ( ( 1Q +Q 1Q ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) = ( 1Q +Q 1Q ) |
| 9 | 2 8 | eqtri | |- ( ( 1Q +Q 1Q ) .Q ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) = ( 1Q +Q 1Q ) |
| 10 | 9 | oveq1i | |- ( ( ( 1Q +Q 1Q ) .Q ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) = ( ( 1Q +Q 1Q ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) |
| 11 | 7 | oveq2i | |- ( ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) .Q ( ( 1Q +Q 1Q ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) = ( ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) .Q 1Q ) |
| 12 | mulassnq | |- ( ( ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) .Q ( 1Q +Q 1Q ) ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) = ( ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) .Q ( ( 1Q +Q 1Q ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) |
|
| 13 | mulcomnq | |- ( ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) .Q ( 1Q +Q 1Q ) ) = ( ( 1Q +Q 1Q ) .Q ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) |
|
| 14 | 13 | oveq1i | |- ( ( ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) .Q ( 1Q +Q 1Q ) ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) = ( ( ( 1Q +Q 1Q ) .Q ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) |
| 15 | 12 14 | eqtr3i | |- ( ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) .Q ( ( 1Q +Q 1Q ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) = ( ( ( 1Q +Q 1Q ) .Q ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) |
| 16 | recclnq | |- ( ( 1Q +Q 1Q ) e. Q. -> ( *Q ` ( 1Q +Q 1Q ) ) e. Q. ) |
|
| 17 | addclnq | |- ( ( ( *Q ` ( 1Q +Q 1Q ) ) e. Q. /\ ( *Q ` ( 1Q +Q 1Q ) ) e. Q. ) -> ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) e. Q. ) |
|
| 18 | 16 16 17 | syl2anc | |- ( ( 1Q +Q 1Q ) e. Q. -> ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) e. Q. ) |
| 19 | mulidnq | |- ( ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) e. Q. -> ( ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) .Q 1Q ) = ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) |
|
| 20 | 5 18 19 | mp2b | |- ( ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) .Q 1Q ) = ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) |
| 21 | 11 15 20 | 3eqtr3i | |- ( ( ( 1Q +Q 1Q ) .Q ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) .Q ( *Q ` ( 1Q +Q 1Q ) ) ) = ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) |
| 22 | 10 21 7 | 3eqtr3i | |- ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) = 1Q |
| 23 | 22 | oveq2i | |- ( A .Q ( ( *Q ` ( 1Q +Q 1Q ) ) +Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) = ( A .Q 1Q ) |
| 24 | 1 23 | eqtr3i | |- ( ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) +Q ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) = ( A .Q 1Q ) |
| 25 | mulidnq | |- ( A e. Q. -> ( A .Q 1Q ) = A ) |
|
| 26 | 24 25 | eqtrid | |- ( A e. Q. -> ( ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) +Q ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) = A ) |
| 27 | ovex | |- ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) e. _V |
|
| 28 | oveq12 | |- ( ( x = ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) /\ x = ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) -> ( x +Q x ) = ( ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) +Q ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) ) |
|
| 29 | 28 | anidms | |- ( x = ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) -> ( x +Q x ) = ( ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) +Q ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) ) |
| 30 | 29 | eqeq1d | |- ( x = ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) -> ( ( x +Q x ) = A <-> ( ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) +Q ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) = A ) ) |
| 31 | 27 30 | spcev | |- ( ( ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) +Q ( A .Q ( *Q ` ( 1Q +Q 1Q ) ) ) ) = A -> E. x ( x +Q x ) = A ) |
| 32 | 26 31 | syl | |- ( A e. Q. -> E. x ( x +Q x ) = A ) |