This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering of positive fractions in terms of positive integers. (Contributed by NM, 13-Feb-1996) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordpinq | |- ( ( A e. Q. /\ B e. Q. ) -> ( A( ( 1st ` A ) .N ( 2nd ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxp | |- ( ( A e. Q. /\ B e. Q. ) -> ( A |
|
| 2 | df-ltnq | |- |
|
| 3 | 2 | breqi | |- ( AA ( |
| 4 | 1 3 | bitr4di | |- ( ( A e. Q. /\ B e. Q. ) -> ( A |
| 5 | relxp | |- Rel ( N. X. N. ) |
|
| 6 | elpqn | |- ( A e. Q. -> A e. ( N. X. N. ) ) |
|
| 7 | 1st2nd | |- ( ( Rel ( N. X. N. ) /\ A e. ( N. X. N. ) ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
|
| 8 | 5 6 7 | sylancr | |- ( A e. Q. -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 9 | elpqn | |- ( B e. Q. -> B e. ( N. X. N. ) ) |
|
| 10 | 1st2nd | |- ( ( Rel ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> B = <. ( 1st ` B ) , ( 2nd ` B ) >. ) |
|
| 11 | 5 9 10 | sylancr | |- ( B e. Q. -> B = <. ( 1st ` B ) , ( 2nd ` B ) >. ) |
| 12 | 8 11 | breqan12d | |- ( ( A e. Q. /\ B e. Q. ) -> ( A |
| 13 | ordpipq | |- ( <. ( 1st ` A ) , ( 2nd ` A ) >. |
|
| 14 | 12 13 | bitrdi | |- ( ( A e. Q. /\ B e. Q. ) -> ( A |
| 15 | 4 14 | bitr3d | |- ( ( A e. Q. /\ B e. Q. ) -> ( A( ( 1st ` A ) .N ( 2nd ` B ) ) |