This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addpipq | |- ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> ( <. A , B >. +pQ <. C , D >. ) = <. ( ( A .N D ) +N ( C .N B ) ) , ( B .N D ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi | |- ( ( A e. N. /\ B e. N. ) -> <. A , B >. e. ( N. X. N. ) ) |
|
| 2 | opelxpi | |- ( ( C e. N. /\ D e. N. ) -> <. C , D >. e. ( N. X. N. ) ) |
|
| 3 | addpipq2 | |- ( ( <. A , B >. e. ( N. X. N. ) /\ <. C , D >. e. ( N. X. N. ) ) -> ( <. A , B >. +pQ <. C , D >. ) = <. ( ( ( 1st ` <. A , B >. ) .N ( 2nd ` <. C , D >. ) ) +N ( ( 1st ` <. C , D >. ) .N ( 2nd ` <. A , B >. ) ) ) , ( ( 2nd ` <. A , B >. ) .N ( 2nd ` <. C , D >. ) ) >. ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> ( <. A , B >. +pQ <. C , D >. ) = <. ( ( ( 1st ` <. A , B >. ) .N ( 2nd ` <. C , D >. ) ) +N ( ( 1st ` <. C , D >. ) .N ( 2nd ` <. A , B >. ) ) ) , ( ( 2nd ` <. A , B >. ) .N ( 2nd ` <. C , D >. ) ) >. ) |
| 5 | op1stg | |- ( ( A e. N. /\ B e. N. ) -> ( 1st ` <. A , B >. ) = A ) |
|
| 6 | op2ndg | |- ( ( C e. N. /\ D e. N. ) -> ( 2nd ` <. C , D >. ) = D ) |
|
| 7 | 5 6 | oveqan12d | |- ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> ( ( 1st ` <. A , B >. ) .N ( 2nd ` <. C , D >. ) ) = ( A .N D ) ) |
| 8 | op1stg | |- ( ( C e. N. /\ D e. N. ) -> ( 1st ` <. C , D >. ) = C ) |
|
| 9 | op2ndg | |- ( ( A e. N. /\ B e. N. ) -> ( 2nd ` <. A , B >. ) = B ) |
|
| 10 | 8 9 | oveqan12rd | |- ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> ( ( 1st ` <. C , D >. ) .N ( 2nd ` <. A , B >. ) ) = ( C .N B ) ) |
| 11 | 7 10 | oveq12d | |- ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> ( ( ( 1st ` <. A , B >. ) .N ( 2nd ` <. C , D >. ) ) +N ( ( 1st ` <. C , D >. ) .N ( 2nd ` <. A , B >. ) ) ) = ( ( A .N D ) +N ( C .N B ) ) ) |
| 12 | 9 6 | oveqan12d | |- ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> ( ( 2nd ` <. A , B >. ) .N ( 2nd ` <. C , D >. ) ) = ( B .N D ) ) |
| 13 | 11 12 | opeq12d | |- ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> <. ( ( ( 1st ` <. A , B >. ) .N ( 2nd ` <. C , D >. ) ) +N ( ( 1st ` <. C , D >. ) .N ( 2nd ` <. A , B >. ) ) ) , ( ( 2nd ` <. A , B >. ) .N ( 2nd ` <. C , D >. ) ) >. = <. ( ( A .N D ) +N ( C .N B ) ) , ( B .N D ) >. ) |
| 14 | 4 13 | eqtrd | |- ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> ( <. A , B >. +pQ <. C , D >. ) = <. ( ( A .N D ) +N ( C .N B ) ) , ( B .N D ) >. ) |