This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltaddnq | |- ( ( A e. Q. /\ B e. Q. ) -> A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( x = A -> x = A ) |
|
| 2 | oveq1 | |- ( x = A -> ( x +Q y ) = ( A +Q y ) ) |
|
| 3 | 1 2 | breq12d | |- ( x = A -> ( xA |
| 4 | oveq2 | |- ( y = B -> ( A +Q y ) = ( A +Q B ) ) |
|
| 5 | 4 | breq2d | |- ( y = B -> ( AA |
| 6 | 1lt2nq | |- 1Q |
|
| 7 | ltmnq | |- ( y e. Q. -> ( 1Q( y .Q 1Q ) |
|
| 8 | 6 7 | mpbii | |- ( y e. Q. -> ( y .Q 1Q ) |
| 9 | mulidnq | |- ( y e. Q. -> ( y .Q 1Q ) = y ) |
|
| 10 | distrnq | |- ( y .Q ( 1Q +Q 1Q ) ) = ( ( y .Q 1Q ) +Q ( y .Q 1Q ) ) |
|
| 11 | 9 9 | oveq12d | |- ( y e. Q. -> ( ( y .Q 1Q ) +Q ( y .Q 1Q ) ) = ( y +Q y ) ) |
| 12 | 10 11 | eqtrid | |- ( y e. Q. -> ( y .Q ( 1Q +Q 1Q ) ) = ( y +Q y ) ) |
| 13 | 8 9 12 | 3brtr3d | |- ( y e. Q. -> y |
| 14 | ltanq | |- ( x e. Q. -> ( y( x +Q y ) |
|
| 15 | 13 14 | imbitrid | |- ( x e. Q. -> ( y e. Q. -> ( x +Q y ) |
| 16 | 15 | imp | |- ( ( x e. Q. /\ y e. Q. ) -> ( x +Q y ) |
| 17 | addcomnq | |- ( x +Q y ) = ( y +Q x ) |
|
| 18 | vex | |- x e. _V |
|
| 19 | vex | |- y e. _V |
|
| 20 | addcomnq | |- ( r +Q s ) = ( s +Q r ) |
|
| 21 | addassnq | |- ( ( r +Q s ) +Q t ) = ( r +Q ( s +Q t ) ) |
|
| 22 | 18 19 19 20 21 | caov12 | |- ( x +Q ( y +Q y ) ) = ( y +Q ( x +Q y ) ) |
| 23 | 16 17 22 | 3brtr3g | |- ( ( x e. Q. /\ y e. Q. ) -> ( y +Q x ) |
| 24 | ltanq | |- ( y e. Q. -> ( x( y +Q x ) |
|
| 25 | 24 | adantl | |- ( ( x e. Q. /\ y e. Q. ) -> ( x( y +Q x ) |
| 26 | 23 25 | mpbird | |- ( ( x e. Q. /\ y e. Q. ) -> x |
| 27 | 3 5 26 | vtocl2ga | |- ( ( A e. Q. /\ B e. Q. ) -> A |