This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed group restricted to a subgroup is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgngp.h | |- H = ( G |`s A ) |
|
| Assertion | subgngp | |- ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) -> H e. NrmGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgngp.h | |- H = ( G |`s A ) |
|
| 2 | 1 | subggrp | |- ( A e. ( SubGrp ` G ) -> H e. Grp ) |
| 3 | 2 | adantl | |- ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) -> H e. Grp ) |
| 4 | ngpms | |- ( G e. NrmGrp -> G e. MetSp ) |
|
| 5 | ressms | |- ( ( G e. MetSp /\ A e. ( SubGrp ` G ) ) -> ( G |`s A ) e. MetSp ) |
|
| 6 | 4 5 | sylan | |- ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) -> ( G |`s A ) e. MetSp ) |
| 7 | 1 6 | eqeltrid | |- ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) -> H e. MetSp ) |
| 8 | simplr | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> A e. ( SubGrp ` G ) ) |
|
| 9 | simprl | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> x e. ( Base ` H ) ) |
|
| 10 | 1 | subgbas | |- ( A e. ( SubGrp ` G ) -> A = ( Base ` H ) ) |
| 11 | 10 | ad2antlr | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> A = ( Base ` H ) ) |
| 12 | 9 11 | eleqtrrd | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> x e. A ) |
| 13 | simprr | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> y e. ( Base ` H ) ) |
|
| 14 | 13 11 | eleqtrrd | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> y e. A ) |
| 15 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 16 | eqid | |- ( -g ` H ) = ( -g ` H ) |
|
| 17 | 15 1 16 | subgsub | |- ( ( A e. ( SubGrp ` G ) /\ x e. A /\ y e. A ) -> ( x ( -g ` G ) y ) = ( x ( -g ` H ) y ) ) |
| 18 | 8 12 14 17 | syl3anc | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( -g ` G ) y ) = ( x ( -g ` H ) y ) ) |
| 19 | 18 | fveq2d | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( ( norm ` G ) ` ( x ( -g ` G ) y ) ) = ( ( norm ` G ) ` ( x ( -g ` H ) y ) ) ) |
| 20 | eqid | |- ( dist ` G ) = ( dist ` G ) |
|
| 21 | 1 20 | ressds | |- ( A e. ( SubGrp ` G ) -> ( dist ` G ) = ( dist ` H ) ) |
| 22 | 21 | ad2antlr | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( dist ` G ) = ( dist ` H ) ) |
| 23 | 22 | oveqd | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( dist ` G ) y ) = ( x ( dist ` H ) y ) ) |
| 24 | simpll | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> G e. NrmGrp ) |
|
| 25 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 26 | 25 | subgss | |- ( A e. ( SubGrp ` G ) -> A C_ ( Base ` G ) ) |
| 27 | 26 | ad2antlr | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> A C_ ( Base ` G ) ) |
| 28 | 27 12 | sseldd | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> x e. ( Base ` G ) ) |
| 29 | 27 14 | sseldd | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> y e. ( Base ` G ) ) |
| 30 | eqid | |- ( norm ` G ) = ( norm ` G ) |
|
| 31 | 30 25 15 20 | ngpds | |- ( ( G e. NrmGrp /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( dist ` G ) y ) = ( ( norm ` G ) ` ( x ( -g ` G ) y ) ) ) |
| 32 | 24 28 29 31 | syl3anc | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( dist ` G ) y ) = ( ( norm ` G ) ` ( x ( -g ` G ) y ) ) ) |
| 33 | 23 32 | eqtr3d | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( dist ` H ) y ) = ( ( norm ` G ) ` ( x ( -g ` G ) y ) ) ) |
| 34 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 35 | 34 16 | grpsubcl | |- ( ( H e. Grp /\ x e. ( Base ` H ) /\ y e. ( Base ` H ) ) -> ( x ( -g ` H ) y ) e. ( Base ` H ) ) |
| 36 | 35 | 3expb | |- ( ( H e. Grp /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( -g ` H ) y ) e. ( Base ` H ) ) |
| 37 | 3 36 | sylan | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( -g ` H ) y ) e. ( Base ` H ) ) |
| 38 | 37 11 | eleqtrrd | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( -g ` H ) y ) e. A ) |
| 39 | eqid | |- ( norm ` H ) = ( norm ` H ) |
|
| 40 | 1 30 39 | subgnm2 | |- ( ( A e. ( SubGrp ` G ) /\ ( x ( -g ` H ) y ) e. A ) -> ( ( norm ` H ) ` ( x ( -g ` H ) y ) ) = ( ( norm ` G ) ` ( x ( -g ` H ) y ) ) ) |
| 41 | 8 38 40 | syl2anc | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( ( norm ` H ) ` ( x ( -g ` H ) y ) ) = ( ( norm ` G ) ` ( x ( -g ` H ) y ) ) ) |
| 42 | 19 33 41 | 3eqtr4d | |- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( dist ` H ) y ) = ( ( norm ` H ) ` ( x ( -g ` H ) y ) ) ) |
| 43 | 42 | ralrimivva | |- ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) -> A. x e. ( Base ` H ) A. y e. ( Base ` H ) ( x ( dist ` H ) y ) = ( ( norm ` H ) ` ( x ( -g ` H ) y ) ) ) |
| 44 | eqid | |- ( dist ` H ) = ( dist ` H ) |
|
| 45 | 39 16 44 34 | isngp3 | |- ( H e. NrmGrp <-> ( H e. Grp /\ H e. MetSp /\ A. x e. ( Base ` H ) A. y e. ( Base ` H ) ( x ( dist ` H ) y ) = ( ( norm ` H ) ` ( x ( -g ` H ) y ) ) ) ) |
| 46 | 3 7 43 45 | syl3anbrc | |- ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) -> H e. NrmGrp ) |