This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar component of a left module is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nlmnrg.1 | |- F = ( Scalar ` W ) |
|
| Assertion | nlmnrg | |- ( W e. NrmMod -> F e. NrmRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmnrg.1 | |- F = ( Scalar ` W ) |
|
| 2 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 3 | eqid | |- ( norm ` W ) = ( norm ` W ) |
|
| 4 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 5 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 6 | eqid | |- ( norm ` F ) = ( norm ` F ) |
|
| 7 | 2 3 4 1 5 6 | isnlm | |- ( W e. NrmMod <-> ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) /\ A. x e. ( Base ` F ) A. y e. ( Base ` W ) ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) = ( ( ( norm ` F ) ` x ) x. ( ( norm ` W ) ` y ) ) ) ) |
| 8 | 7 | simplbi | |- ( W e. NrmMod -> ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) ) |
| 9 | 8 | simp3d | |- ( W e. NrmMod -> F e. NrmRing ) |