This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a normed vector space is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssnlm.x | |- X = ( W |`s U ) |
|
| lssnlm.s | |- S = ( LSubSp ` W ) |
||
| Assertion | lssnvc | |- ( ( W e. NrmVec /\ U e. S ) -> X e. NrmVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssnlm.x | |- X = ( W |`s U ) |
|
| 2 | lssnlm.s | |- S = ( LSubSp ` W ) |
|
| 3 | nvcnlm | |- ( W e. NrmVec -> W e. NrmMod ) |
|
| 4 | 1 2 | lssnlm | |- ( ( W e. NrmMod /\ U e. S ) -> X e. NrmMod ) |
| 5 | 3 4 | sylan | |- ( ( W e. NrmVec /\ U e. S ) -> X e. NrmMod ) |
| 6 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 7 | 1 6 | resssca | |- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 8 | 7 | adantl | |- ( ( W e. NrmVec /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 9 | nvclvec | |- ( W e. NrmVec -> W e. LVec ) |
|
| 10 | 6 | lvecdrng | |- ( W e. LVec -> ( Scalar ` W ) e. DivRing ) |
| 11 | 9 10 | syl | |- ( W e. NrmVec -> ( Scalar ` W ) e. DivRing ) |
| 12 | 11 | adantr | |- ( ( W e. NrmVec /\ U e. S ) -> ( Scalar ` W ) e. DivRing ) |
| 13 | 8 12 | eqeltrrd | |- ( ( W e. NrmVec /\ U e. S ) -> ( Scalar ` X ) e. DivRing ) |
| 14 | eqid | |- ( Scalar ` X ) = ( Scalar ` X ) |
|
| 15 | 14 | isnvc2 | |- ( X e. NrmVec <-> ( X e. NrmMod /\ ( Scalar ` X ) e. DivRing ) ) |
| 16 | 5 13 15 | sylanbrc | |- ( ( W e. NrmVec /\ U e. S ) -> X e. NrmVec ) |