This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of Kalmbach p. 153. (Contributed by NM, 7-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spansncv.1 | |- A e. CH |
|
| spansncv.2 | |- B e. CH |
||
| spansncv.3 | |- C e. ~H |
||
| Assertion | spansncvi | |- ( ( A C. B /\ B C_ ( A vH ( span ` { C } ) ) ) -> B = ( A vH ( span ` { C } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansncv.1 | |- A e. CH |
|
| 2 | spansncv.2 | |- B e. CH |
|
| 3 | spansncv.3 | |- C e. ~H |
|
| 4 | simpr | |- ( ( A C. B /\ B C_ ( A vH ( span ` { C } ) ) ) -> B C_ ( A vH ( span ` { C } ) ) ) |
|
| 5 | pssss | |- ( A C. B -> A C_ B ) |
|
| 6 | 5 | adantr | |- ( ( A C. B /\ B C_ ( A vH ( span ` { C } ) ) ) -> A C_ B ) |
| 7 | pssnel | |- ( A C. B -> E. x ( x e. B /\ -. x e. A ) ) |
|
| 8 | ssel2 | |- ( ( B C_ ( A vH ( span ` { C } ) ) /\ x e. B ) -> x e. ( A vH ( span ` { C } ) ) ) |
|
| 9 | 1 3 | spansnji | |- ( A +H ( span ` { C } ) ) = ( A vH ( span ` { C } ) ) |
| 10 | 9 | eleq2i | |- ( x e. ( A +H ( span ` { C } ) ) <-> x e. ( A vH ( span ` { C } ) ) ) |
| 11 | 3 | spansnchi | |- ( span ` { C } ) e. CH |
| 12 | 1 11 | chseli | |- ( x e. ( A +H ( span ` { C } ) ) <-> E. y e. A E. z e. ( span ` { C } ) x = ( y +h z ) ) |
| 13 | 10 12 | bitr3i | |- ( x e. ( A vH ( span ` { C } ) ) <-> E. y e. A E. z e. ( span ` { C } ) x = ( y +h z ) ) |
| 14 | eleq1 | |- ( x = ( y +h z ) -> ( x e. B <-> ( y +h z ) e. B ) ) |
|
| 15 | 14 | biimpac | |- ( ( x e. B /\ x = ( y +h z ) ) -> ( y +h z ) e. B ) |
| 16 | 5 | sselda | |- ( ( A C. B /\ y e. A ) -> y e. B ) |
| 17 | 2 | chshii | |- B e. SH |
| 18 | shsubcl | |- ( ( B e. SH /\ ( y +h z ) e. B /\ y e. B ) -> ( ( y +h z ) -h y ) e. B ) |
|
| 19 | 17 18 | mp3an1 | |- ( ( ( y +h z ) e. B /\ y e. B ) -> ( ( y +h z ) -h y ) e. B ) |
| 20 | 15 16 19 | syl2an | |- ( ( ( x e. B /\ x = ( y +h z ) ) /\ ( A C. B /\ y e. A ) ) -> ( ( y +h z ) -h y ) e. B ) |
| 21 | 20 | exp43 | |- ( x e. B -> ( x = ( y +h z ) -> ( A C. B -> ( y e. A -> ( ( y +h z ) -h y ) e. B ) ) ) ) |
| 22 | 21 | com14 | |- ( y e. A -> ( x = ( y +h z ) -> ( A C. B -> ( x e. B -> ( ( y +h z ) -h y ) e. B ) ) ) ) |
| 23 | 22 | imp45 | |- ( ( y e. A /\ ( x = ( y +h z ) /\ ( A C. B /\ x e. B ) ) ) -> ( ( y +h z ) -h y ) e. B ) |
| 24 | 1 | cheli | |- ( y e. A -> y e. ~H ) |
| 25 | 11 | cheli | |- ( z e. ( span ` { C } ) -> z e. ~H ) |
| 26 | hvpncan2 | |- ( ( y e. ~H /\ z e. ~H ) -> ( ( y +h z ) -h y ) = z ) |
|
| 27 | 24 25 26 | syl2an | |- ( ( y e. A /\ z e. ( span ` { C } ) ) -> ( ( y +h z ) -h y ) = z ) |
| 28 | 27 | eleq1d | |- ( ( y e. A /\ z e. ( span ` { C } ) ) -> ( ( ( y +h z ) -h y ) e. B <-> z e. B ) ) |
| 29 | 23 28 | imbitrid | |- ( ( y e. A /\ z e. ( span ` { C } ) ) -> ( ( y e. A /\ ( x = ( y +h z ) /\ ( A C. B /\ x e. B ) ) ) -> z e. B ) ) |
| 30 | 29 | imp | |- ( ( ( y e. A /\ z e. ( span ` { C } ) ) /\ ( y e. A /\ ( x = ( y +h z ) /\ ( A C. B /\ x e. B ) ) ) ) -> z e. B ) |
| 31 | 30 | anandis | |- ( ( y e. A /\ ( z e. ( span ` { C } ) /\ ( x = ( y +h z ) /\ ( A C. B /\ x e. B ) ) ) ) -> z e. B ) |
| 32 | 31 | exp45 | |- ( y e. A -> ( z e. ( span ` { C } ) -> ( x = ( y +h z ) -> ( ( A C. B /\ x e. B ) -> z e. B ) ) ) ) |
| 33 | 32 | imp41 | |- ( ( ( ( y e. A /\ z e. ( span ` { C } ) ) /\ x = ( y +h z ) ) /\ ( A C. B /\ x e. B ) ) -> z e. B ) |
| 34 | 33 | adantrr | |- ( ( ( ( y e. A /\ z e. ( span ` { C } ) ) /\ x = ( y +h z ) ) /\ ( ( A C. B /\ x e. B ) /\ -. x e. A ) ) -> z e. B ) |
| 35 | oveq2 | |- ( z = 0h -> ( y +h z ) = ( y +h 0h ) ) |
|
| 36 | ax-hvaddid | |- ( y e. ~H -> ( y +h 0h ) = y ) |
|
| 37 | 24 36 | syl | |- ( y e. A -> ( y +h 0h ) = y ) |
| 38 | 35 37 | sylan9eqr | |- ( ( y e. A /\ z = 0h ) -> ( y +h z ) = y ) |
| 39 | 38 | eqeq2d | |- ( ( y e. A /\ z = 0h ) -> ( x = ( y +h z ) <-> x = y ) ) |
| 40 | eleq1a | |- ( y e. A -> ( x = y -> x e. A ) ) |
|
| 41 | 40 | adantr | |- ( ( y e. A /\ z = 0h ) -> ( x = y -> x e. A ) ) |
| 42 | 39 41 | sylbid | |- ( ( y e. A /\ z = 0h ) -> ( x = ( y +h z ) -> x e. A ) ) |
| 43 | 42 | impancom | |- ( ( y e. A /\ x = ( y +h z ) ) -> ( z = 0h -> x e. A ) ) |
| 44 | 43 | necon3bd | |- ( ( y e. A /\ x = ( y +h z ) ) -> ( -. x e. A -> z =/= 0h ) ) |
| 45 | 44 | imp | |- ( ( ( y e. A /\ x = ( y +h z ) ) /\ -. x e. A ) -> z =/= 0h ) |
| 46 | spansnss | |- ( ( B e. SH /\ z e. B ) -> ( span ` { z } ) C_ B ) |
|
| 47 | 17 46 | mpan | |- ( z e. B -> ( span ` { z } ) C_ B ) |
| 48 | spansneleq | |- ( ( C e. ~H /\ z =/= 0h ) -> ( z e. ( span ` { C } ) -> ( span ` { z } ) = ( span ` { C } ) ) ) |
|
| 49 | 3 48 | mpan | |- ( z =/= 0h -> ( z e. ( span ` { C } ) -> ( span ` { z } ) = ( span ` { C } ) ) ) |
| 50 | 49 | imp | |- ( ( z =/= 0h /\ z e. ( span ` { C } ) ) -> ( span ` { z } ) = ( span ` { C } ) ) |
| 51 | 50 | sseq1d | |- ( ( z =/= 0h /\ z e. ( span ` { C } ) ) -> ( ( span ` { z } ) C_ B <-> ( span ` { C } ) C_ B ) ) |
| 52 | 47 51 | imbitrid | |- ( ( z =/= 0h /\ z e. ( span ` { C } ) ) -> ( z e. B -> ( span ` { C } ) C_ B ) ) |
| 53 | 52 | ancoms | |- ( ( z e. ( span ` { C } ) /\ z =/= 0h ) -> ( z e. B -> ( span ` { C } ) C_ B ) ) |
| 54 | 45 53 | sylan2 | |- ( ( z e. ( span ` { C } ) /\ ( ( y e. A /\ x = ( y +h z ) ) /\ -. x e. A ) ) -> ( z e. B -> ( span ` { C } ) C_ B ) ) |
| 55 | 54 | exp44 | |- ( z e. ( span ` { C } ) -> ( y e. A -> ( x = ( y +h z ) -> ( -. x e. A -> ( z e. B -> ( span ` { C } ) C_ B ) ) ) ) ) |
| 56 | 55 | com12 | |- ( y e. A -> ( z e. ( span ` { C } ) -> ( x = ( y +h z ) -> ( -. x e. A -> ( z e. B -> ( span ` { C } ) C_ B ) ) ) ) ) |
| 57 | 56 | imp41 | |- ( ( ( ( y e. A /\ z e. ( span ` { C } ) ) /\ x = ( y +h z ) ) /\ -. x e. A ) -> ( z e. B -> ( span ` { C } ) C_ B ) ) |
| 58 | 57 | adantrl | |- ( ( ( ( y e. A /\ z e. ( span ` { C } ) ) /\ x = ( y +h z ) ) /\ ( ( A C. B /\ x e. B ) /\ -. x e. A ) ) -> ( z e. B -> ( span ` { C } ) C_ B ) ) |
| 59 | 34 58 | mpd | |- ( ( ( ( y e. A /\ z e. ( span ` { C } ) ) /\ x = ( y +h z ) ) /\ ( ( A C. B /\ x e. B ) /\ -. x e. A ) ) -> ( span ` { C } ) C_ B ) |
| 60 | 59 | exp43 | |- ( ( y e. A /\ z e. ( span ` { C } ) ) -> ( x = ( y +h z ) -> ( ( A C. B /\ x e. B ) -> ( -. x e. A -> ( span ` { C } ) C_ B ) ) ) ) |
| 61 | 60 | rexlimivv | |- ( E. y e. A E. z e. ( span ` { C } ) x = ( y +h z ) -> ( ( A C. B /\ x e. B ) -> ( -. x e. A -> ( span ` { C } ) C_ B ) ) ) |
| 62 | 13 61 | sylbi | |- ( x e. ( A vH ( span ` { C } ) ) -> ( ( A C. B /\ x e. B ) -> ( -. x e. A -> ( span ` { C } ) C_ B ) ) ) |
| 63 | 8 62 | syl | |- ( ( B C_ ( A vH ( span ` { C } ) ) /\ x e. B ) -> ( ( A C. B /\ x e. B ) -> ( -. x e. A -> ( span ` { C } ) C_ B ) ) ) |
| 64 | 63 | imp | |- ( ( ( B C_ ( A vH ( span ` { C } ) ) /\ x e. B ) /\ ( A C. B /\ x e. B ) ) -> ( -. x e. A -> ( span ` { C } ) C_ B ) ) |
| 65 | 64 | anandirs | |- ( ( ( B C_ ( A vH ( span ` { C } ) ) /\ A C. B ) /\ x e. B ) -> ( -. x e. A -> ( span ` { C } ) C_ B ) ) |
| 66 | 65 | expimpd | |- ( ( B C_ ( A vH ( span ` { C } ) ) /\ A C. B ) -> ( ( x e. B /\ -. x e. A ) -> ( span ` { C } ) C_ B ) ) |
| 67 | 66 | exlimdv | |- ( ( B C_ ( A vH ( span ` { C } ) ) /\ A C. B ) -> ( E. x ( x e. B /\ -. x e. A ) -> ( span ` { C } ) C_ B ) ) |
| 68 | 7 67 | syl5 | |- ( ( B C_ ( A vH ( span ` { C } ) ) /\ A C. B ) -> ( A C. B -> ( span ` { C } ) C_ B ) ) |
| 69 | 68 | ex | |- ( B C_ ( A vH ( span ` { C } ) ) -> ( A C. B -> ( A C. B -> ( span ` { C } ) C_ B ) ) ) |
| 70 | 69 | pm2.43d | |- ( B C_ ( A vH ( span ` { C } ) ) -> ( A C. B -> ( span ` { C } ) C_ B ) ) |
| 71 | 70 | impcom | |- ( ( A C. B /\ B C_ ( A vH ( span ` { C } ) ) ) -> ( span ` { C } ) C_ B ) |
| 72 | 1 11 2 | chlubii | |- ( ( A C_ B /\ ( span ` { C } ) C_ B ) -> ( A vH ( span ` { C } ) ) C_ B ) |
| 73 | 6 71 72 | syl2anc | |- ( ( A C. B /\ B C_ ( A vH ( span ` { C } ) ) ) -> ( A vH ( span ` { C } ) ) C_ B ) |
| 74 | 4 73 | eqssd | |- ( ( A C. B /\ B C_ ( A vH ( span ` { C } ) ) ) -> B = ( A vH ( span ` { C } ) ) ) |