This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of vector subtraction in a subspace. (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssvsubcl.m | |- .- = ( -g ` W ) |
|
| lssvsubcl.s | |- S = ( LSubSp ` W ) |
||
| Assertion | lssvsubcl | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( X .- Y ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssvsubcl.m | |- .- = ( -g ` W ) |
|
| 2 | lssvsubcl.s | |- S = ( LSubSp ` W ) |
|
| 3 | simpll | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> W e. LMod ) |
|
| 4 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 5 | 4 2 | lssel | |- ( ( U e. S /\ X e. U ) -> X e. ( Base ` W ) ) |
| 6 | 5 | ad2ant2lr | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> X e. ( Base ` W ) ) |
| 7 | 4 2 | lssel | |- ( ( U e. S /\ Y e. U ) -> Y e. ( Base ` W ) ) |
| 8 | 7 | ad2ant2l | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> Y e. ( Base ` W ) ) |
| 9 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 10 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 11 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 12 | eqid | |- ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) ) |
|
| 13 | eqid | |- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
|
| 14 | 4 9 1 10 11 12 13 | lmodvsubval2 | |- ( ( W e. LMod /\ X e. ( Base ` W ) /\ Y e. ( Base ` W ) ) -> ( X .- Y ) = ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) Y ) ) ) |
| 15 | 3 6 8 14 | syl3anc | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( X .- Y ) = ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) Y ) ) ) |
| 16 | 10 | lmodfgrp | |- ( W e. LMod -> ( Scalar ` W ) e. Grp ) |
| 17 | 3 16 | syl | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( Scalar ` W ) e. Grp ) |
| 18 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 19 | 10 18 13 | lmod1cl | |- ( W e. LMod -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 20 | 3 19 | syl | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 21 | 18 12 | grpinvcl | |- ( ( ( Scalar ` W ) e. Grp /\ ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 22 | 17 20 21 | syl2anc | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 23 | 4 10 11 18 | lmodvscl | |- ( ( W e. LMod /\ ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) /\ Y e. ( Base ` W ) ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) Y ) e. ( Base ` W ) ) |
| 24 | 3 22 8 23 | syl3anc | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) Y ) e. ( Base ` W ) ) |
| 25 | 4 9 | lmodcom | |- ( ( W e. LMod /\ X e. ( Base ` W ) /\ ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) Y ) e. ( Base ` W ) ) -> ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) Y ) ) = ( ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) Y ) ( +g ` W ) X ) ) |
| 26 | 3 6 24 25 | syl3anc | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) Y ) ) = ( ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) Y ) ( +g ` W ) X ) ) |
| 27 | simplr | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> U e. S ) |
|
| 28 | simprr | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> Y e. U ) |
|
| 29 | simprl | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> X e. U ) |
|
| 30 | 10 18 9 11 2 | lsscl | |- ( ( U e. S /\ ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) /\ Y e. U /\ X e. U ) ) -> ( ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) Y ) ( +g ` W ) X ) e. U ) |
| 31 | 27 22 28 29 30 | syl13anc | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) Y ) ( +g ` W ) X ) e. U ) |
| 32 | 26 31 | eqeltrd | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) Y ) ) e. U ) |
| 33 | 15 32 | eqeltrd | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( X .- Y ) e. U ) |