This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction in an Abelian group. (Contributed by NM, 2-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubadd.b | |- B = ( Base ` G ) |
|
| ablsubadd.p | |- .+ = ( +g ` G ) |
||
| ablsubadd.m | |- .- = ( -g ` G ) |
||
| Assertion | ablpncan2 | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( ( X .+ Y ) .- X ) = Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubadd.b | |- B = ( Base ` G ) |
|
| 2 | ablsubadd.p | |- .+ = ( +g ` G ) |
|
| 3 | ablsubadd.m | |- .- = ( -g ` G ) |
|
| 4 | simp1 | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> G e. Abel ) |
|
| 5 | simp2 | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> X e. B ) |
|
| 6 | simp3 | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 7 | 1 2 3 | abladdsub | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B /\ X e. B ) ) -> ( ( X .+ Y ) .- X ) = ( ( X .- X ) .+ Y ) ) |
| 8 | 4 5 6 5 7 | syl13anc | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( ( X .+ Y ) .- X ) = ( ( X .- X ) .+ Y ) ) |
| 9 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 10 | 4 9 | syl | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> G e. Grp ) |
| 11 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 12 | 1 11 3 | grpsubid | |- ( ( G e. Grp /\ X e. B ) -> ( X .- X ) = ( 0g ` G ) ) |
| 13 | 10 5 12 | syl2anc | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( X .- X ) = ( 0g ` G ) ) |
| 14 | 13 | oveq1d | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( ( X .- X ) .+ Y ) = ( ( 0g ` G ) .+ Y ) ) |
| 15 | 1 2 11 | grplid | |- ( ( G e. Grp /\ Y e. B ) -> ( ( 0g ` G ) .+ Y ) = Y ) |
| 16 | 10 6 15 | syl2anc | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( ( 0g ` G ) .+ Y ) = Y ) |
| 17 | 8 14 16 | 3eqtrd | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( ( X .+ Y ) .- X ) = Y ) |