This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubdistr2 | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A - B ) .h C ) = ( ( A .h C ) -h ( B .h C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl | |- ( ( A e. CC /\ C e. ~H ) -> ( A .h C ) e. ~H ) |
|
| 2 | 1 | 3adant2 | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( A .h C ) e. ~H ) |
| 3 | hvmulcl | |- ( ( B e. CC /\ C e. ~H ) -> ( B .h C ) e. ~H ) |
|
| 4 | 3 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( B .h C ) e. ~H ) |
| 5 | hvsubval | |- ( ( ( A .h C ) e. ~H /\ ( B .h C ) e. ~H ) -> ( ( A .h C ) -h ( B .h C ) ) = ( ( A .h C ) +h ( -u 1 .h ( B .h C ) ) ) ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A .h C ) -h ( B .h C ) ) = ( ( A .h C ) +h ( -u 1 .h ( B .h C ) ) ) ) |
| 7 | mulm1 | |- ( B e. CC -> ( -u 1 x. B ) = -u B ) |
|
| 8 | 7 | oveq1d | |- ( B e. CC -> ( ( -u 1 x. B ) .h C ) = ( -u B .h C ) ) |
| 9 | 8 | adantr | |- ( ( B e. CC /\ C e. ~H ) -> ( ( -u 1 x. B ) .h C ) = ( -u B .h C ) ) |
| 10 | neg1cn | |- -u 1 e. CC |
|
| 11 | ax-hvmulass | |- ( ( -u 1 e. CC /\ B e. CC /\ C e. ~H ) -> ( ( -u 1 x. B ) .h C ) = ( -u 1 .h ( B .h C ) ) ) |
|
| 12 | 10 11 | mp3an1 | |- ( ( B e. CC /\ C e. ~H ) -> ( ( -u 1 x. B ) .h C ) = ( -u 1 .h ( B .h C ) ) ) |
| 13 | 9 12 | eqtr3d | |- ( ( B e. CC /\ C e. ~H ) -> ( -u B .h C ) = ( -u 1 .h ( B .h C ) ) ) |
| 14 | 13 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( -u B .h C ) = ( -u 1 .h ( B .h C ) ) ) |
| 15 | 14 | oveq2d | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A .h C ) +h ( -u B .h C ) ) = ( ( A .h C ) +h ( -u 1 .h ( B .h C ) ) ) ) |
| 16 | negcl | |- ( B e. CC -> -u B e. CC ) |
|
| 17 | ax-hvdistr2 | |- ( ( A e. CC /\ -u B e. CC /\ C e. ~H ) -> ( ( A + -u B ) .h C ) = ( ( A .h C ) +h ( -u B .h C ) ) ) |
|
| 18 | 16 17 | syl3an2 | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A + -u B ) .h C ) = ( ( A .h C ) +h ( -u B .h C ) ) ) |
| 19 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
| 20 | 19 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( A + -u B ) = ( A - B ) ) |
| 21 | 20 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A + -u B ) .h C ) = ( ( A - B ) .h C ) ) |
| 22 | 18 21 | eqtr3d | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A .h C ) +h ( -u B .h C ) ) = ( ( A - B ) .h C ) ) |
| 23 | 6 15 22 | 3eqtr2rd | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A - B ) .h C ) = ( ( A .h C ) -h ( B .h C ) ) ) |