This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by Mario Carneiro, 7-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limsupgord | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> sup ( ( ( F " ( B [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A e. RR* ) |
| 3 | simp3 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A <_ B ) |
|
| 4 | df-ico | |- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
|
| 5 | xrletr | |- ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( A <_ B /\ B <_ w ) -> A <_ w ) ) |
|
| 6 | 4 4 5 | ixxss1 | |- ( ( A e. RR* /\ A <_ B ) -> ( B [,) +oo ) C_ ( A [,) +oo ) ) |
| 7 | 2 3 6 | syl2anc | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( B [,) +oo ) C_ ( A [,) +oo ) ) |
| 8 | imass2 | |- ( ( B [,) +oo ) C_ ( A [,) +oo ) -> ( F " ( B [,) +oo ) ) C_ ( F " ( A [,) +oo ) ) ) |
|
| 9 | ssrin | |- ( ( F " ( B [,) +oo ) ) C_ ( F " ( A [,) +oo ) ) -> ( ( F " ( B [,) +oo ) ) i^i RR* ) C_ ( ( F " ( A [,) +oo ) ) i^i RR* ) ) |
|
| 10 | 7 8 9 | 3syl | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( F " ( B [,) +oo ) ) i^i RR* ) C_ ( ( F " ( A [,) +oo ) ) i^i RR* ) ) |
| 11 | inss2 | |- ( ( F " ( A [,) +oo ) ) i^i RR* ) C_ RR* |
|
| 12 | supxrcl | |- ( ( ( F " ( A [,) +oo ) ) i^i RR* ) C_ RR* -> sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
|
| 13 | 11 12 | ax-mp | |- sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
| 14 | xrleid | |- ( sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* -> sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| 15 | 13 14 | ax-mp | |- sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) |
| 16 | supxrleub | |- ( ( ( ( F " ( A [,) +oo ) ) i^i RR* ) C_ RR* /\ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) -> ( sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <-> A. x e. ( ( F " ( A [,) +oo ) ) i^i RR* ) x <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
|
| 17 | 11 13 16 | mp2an | |- ( sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <-> A. x e. ( ( F " ( A [,) +oo ) ) i^i RR* ) x <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 18 | 15 17 | mpbi | |- A. x e. ( ( F " ( A [,) +oo ) ) i^i RR* ) x <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) |
| 19 | ssralv | |- ( ( ( F " ( B [,) +oo ) ) i^i RR* ) C_ ( ( F " ( A [,) +oo ) ) i^i RR* ) -> ( A. x e. ( ( F " ( A [,) +oo ) ) i^i RR* ) x <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) -> A. x e. ( ( F " ( B [,) +oo ) ) i^i RR* ) x <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
|
| 20 | 10 18 19 | mpisyl | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A. x e. ( ( F " ( B [,) +oo ) ) i^i RR* ) x <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 21 | inss2 | |- ( ( F " ( B [,) +oo ) ) i^i RR* ) C_ RR* |
|
| 22 | supxrleub | |- ( ( ( ( F " ( B [,) +oo ) ) i^i RR* ) C_ RR* /\ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) -> ( sup ( ( ( F " ( B [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <-> A. x e. ( ( F " ( B [,) +oo ) ) i^i RR* ) x <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
|
| 23 | 21 13 22 | mp2an | |- ( sup ( ( ( F " ( B [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <-> A. x e. ( ( F " ( B [,) +oo ) ) i^i RR* ) x <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 24 | 20 23 | sylibr | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> sup ( ( ( F " ( B [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) ) |