This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The superior limit of an infinite sequence F of extended real numbers, which is the infimum of the set of suprema of all upper infinite subsequences of F . Definition 12-4.1 of Gleason p. 175. (Contributed by NM, 26-Oct-2005) (Revised by AV, 12-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limsupval.1 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| Assertion | limsupval | |- ( F e. V -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval.1 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| 2 | elex | |- ( F e. V -> F e. _V ) |
|
| 3 | imaeq1 | |- ( x = F -> ( x " ( k [,) +oo ) ) = ( F " ( k [,) +oo ) ) ) |
|
| 4 | 3 | ineq1d | |- ( x = F -> ( ( x " ( k [,) +oo ) ) i^i RR* ) = ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
| 5 | 4 | supeq1d | |- ( x = F -> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 6 | 5 | mpteq2dv | |- ( x = F -> ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
| 7 | 6 1 | eqtr4di | |- ( x = F -> ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = G ) |
| 8 | 7 | rneqd | |- ( x = F -> ran ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ran G ) |
| 9 | 8 | infeq1d | |- ( x = F -> inf ( ran ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) = inf ( ran G , RR* , < ) ) |
| 10 | df-limsup | |- limsup = ( x e. _V |-> inf ( ran ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
|
| 11 | xrltso | |- < Or RR* |
|
| 12 | 11 | infex | |- inf ( ran G , RR* , < ) e. _V |
| 13 | 9 10 12 | fvmpt | |- ( F e. _V -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |
| 14 | 2 13 | syl | |- ( F e. V -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |