This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limsupval.1 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| Assertion | limsuple | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( A <_ ( limsup ` F ) <-> A. j e. RR A <_ ( G ` j ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval.1 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| 2 | simp2 | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> F : B --> RR* ) |
|
| 3 | reex | |- RR e. _V |
|
| 4 | 3 | ssex | |- ( B C_ RR -> B e. _V ) |
| 5 | 4 | 3ad2ant1 | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> B e. _V ) |
| 6 | xrex | |- RR* e. _V |
|
| 7 | 6 | a1i | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> RR* e. _V ) |
| 8 | fex2 | |- ( ( F : B --> RR* /\ B e. _V /\ RR* e. _V ) -> F e. _V ) |
|
| 9 | 2 5 7 8 | syl3anc | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> F e. _V ) |
| 10 | 1 | limsupval | |- ( F e. _V -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |
| 11 | 9 10 | syl | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |
| 12 | 11 | breq2d | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( A <_ ( limsup ` F ) <-> A <_ inf ( ran G , RR* , < ) ) ) |
| 13 | 1 | limsupgf | |- G : RR --> RR* |
| 14 | frn | |- ( G : RR --> RR* -> ran G C_ RR* ) |
|
| 15 | 13 14 | ax-mp | |- ran G C_ RR* |
| 16 | simp3 | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> A e. RR* ) |
|
| 17 | infxrgelb | |- ( ( ran G C_ RR* /\ A e. RR* ) -> ( A <_ inf ( ran G , RR* , < ) <-> A. x e. ran G A <_ x ) ) |
|
| 18 | 15 16 17 | sylancr | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( A <_ inf ( ran G , RR* , < ) <-> A. x e. ran G A <_ x ) ) |
| 19 | ffn | |- ( G : RR --> RR* -> G Fn RR ) |
|
| 20 | 13 19 | ax-mp | |- G Fn RR |
| 21 | breq2 | |- ( x = ( G ` j ) -> ( A <_ x <-> A <_ ( G ` j ) ) ) |
|
| 22 | 21 | ralrn | |- ( G Fn RR -> ( A. x e. ran G A <_ x <-> A. j e. RR A <_ ( G ` j ) ) ) |
| 23 | 20 22 | ax-mp | |- ( A. x e. ran G A <_ x <-> A. j e. RR A <_ ( G ` j ) ) |
| 24 | 18 23 | bitrdi | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( A <_ inf ( ran G , RR* , < ) <-> A. j e. RR A <_ ( G ` j ) ) ) |
| 25 | 12 24 | bitrd | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( A <_ ( limsup ` F ) <-> A. j e. RR A <_ ( G ` j ) ) ) |