This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function analogue of negsub . (Contributed by Mario Carneiro, 24-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofnegsub | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( F oF + ( ( A X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> A e. V ) |
|
| 2 | simp2 | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> F : A --> CC ) |
|
| 3 | 2 | ffnd | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> F Fn A ) |
| 4 | ax-1cn | |- 1 e. CC |
|
| 5 | 4 | negcli | |- -u 1 e. CC |
| 6 | fnconstg | |- ( -u 1 e. CC -> ( A X. { -u 1 } ) Fn A ) |
|
| 7 | 5 6 | mp1i | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( A X. { -u 1 } ) Fn A ) |
| 8 | simp3 | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> G : A --> CC ) |
|
| 9 | 8 | ffnd | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> G Fn A ) |
| 10 | inidm | |- ( A i^i A ) = A |
|
| 11 | 7 9 1 1 10 | offn | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( ( A X. { -u 1 } ) oF x. G ) Fn A ) |
| 12 | 3 9 1 1 10 | offn | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( F oF - G ) Fn A ) |
| 13 | eqidd | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
|
| 14 | 5 | a1i | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> -u 1 e. CC ) |
| 15 | eqidd | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
|
| 16 | 1 14 9 15 | ofc1 | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( ( A X. { -u 1 } ) oF x. G ) ` x ) = ( -u 1 x. ( G ` x ) ) ) |
| 17 | 8 | ffvelcdmda | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( G ` x ) e. CC ) |
| 18 | 17 | mulm1d | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( -u 1 x. ( G ` x ) ) = -u ( G ` x ) ) |
| 19 | 16 18 | eqtrd | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( ( A X. { -u 1 } ) oF x. G ) ` x ) = -u ( G ` x ) ) |
| 20 | 2 | ffvelcdmda | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( F ` x ) e. CC ) |
| 21 | 20 17 | negsubd | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( F ` x ) + -u ( G ` x ) ) = ( ( F ` x ) - ( G ` x ) ) ) |
| 22 | 3 9 1 1 10 13 15 | ofval | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( F oF - G ) ` x ) = ( ( F ` x ) - ( G ` x ) ) ) |
| 23 | 21 22 | eqtr4d | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( F ` x ) + -u ( G ` x ) ) = ( ( F oF - G ) ` x ) ) |
| 24 | 1 3 11 12 13 19 23 | offveq | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( F oF + ( ( A X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |