This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The involution function in a star ring distributes over multiplication, with a change in the order of the factors. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srngcl.i | |- .* = ( *r ` R ) |
|
| srngcl.b | |- B = ( Base ` R ) |
||
| srngmul.t | |- .x. = ( .r ` R ) |
||
| Assertion | srngmul | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( .* ` ( X .x. Y ) ) = ( ( .* ` Y ) .x. ( .* ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srngcl.i | |- .* = ( *r ` R ) |
|
| 2 | srngcl.b | |- B = ( Base ` R ) |
|
| 3 | srngmul.t | |- .x. = ( .r ` R ) |
|
| 4 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 5 | eqid | |- ( *rf ` R ) = ( *rf ` R ) |
|
| 6 | 4 5 | srngrhm | |- ( R e. *Ring -> ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) ) |
| 7 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 8 | 2 3 7 | rhmmul | |- ( ( ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) /\ X e. B /\ Y e. B ) -> ( ( *rf ` R ) ` ( X .x. Y ) ) = ( ( ( *rf ` R ) ` X ) ( .r ` ( oppR ` R ) ) ( ( *rf ` R ) ` Y ) ) ) |
| 9 | 6 8 | syl3an1 | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( ( *rf ` R ) ` ( X .x. Y ) ) = ( ( ( *rf ` R ) ` X ) ( .r ` ( oppR ` R ) ) ( ( *rf ` R ) ` Y ) ) ) |
| 10 | 2 3 4 7 | opprmul | |- ( ( ( *rf ` R ) ` X ) ( .r ` ( oppR ` R ) ) ( ( *rf ` R ) ` Y ) ) = ( ( ( *rf ` R ) ` Y ) .x. ( ( *rf ` R ) ` X ) ) |
| 11 | 9 10 | eqtrdi | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( ( *rf ` R ) ` ( X .x. Y ) ) = ( ( ( *rf ` R ) ` Y ) .x. ( ( *rf ` R ) ` X ) ) ) |
| 12 | srngring | |- ( R e. *Ring -> R e. Ring ) |
|
| 13 | 2 3 | ringcl | |- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 14 | 12 13 | syl3an1 | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 15 | 2 1 5 | stafval | |- ( ( X .x. Y ) e. B -> ( ( *rf ` R ) ` ( X .x. Y ) ) = ( .* ` ( X .x. Y ) ) ) |
| 16 | 14 15 | syl | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( ( *rf ` R ) ` ( X .x. Y ) ) = ( .* ` ( X .x. Y ) ) ) |
| 17 | 2 1 5 | stafval | |- ( Y e. B -> ( ( *rf ` R ) ` Y ) = ( .* ` Y ) ) |
| 18 | 17 | 3ad2ant3 | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( ( *rf ` R ) ` Y ) = ( .* ` Y ) ) |
| 19 | 2 1 5 | stafval | |- ( X e. B -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) |
| 20 | 19 | 3ad2ant2 | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) |
| 21 | 18 20 | oveq12d | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( ( ( *rf ` R ) ` Y ) .x. ( ( *rf ` R ) ` X ) ) = ( ( .* ` Y ) .x. ( .* ` X ) ) ) |
| 22 | 11 16 21 | 3eqtr3d | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( .* ` ( X .x. Y ) ) = ( ( .* ` Y ) .x. ( .* ` X ) ) ) |