This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | phlsrng.f | |- F = ( Scalar ` W ) |
|
| Assertion | phlsrng | |- ( W e. PreHil -> F e. *Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | |- F = ( Scalar ` W ) |
|
| 2 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 3 | eqid | |- ( .i ` W ) = ( .i ` W ) |
|
| 4 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 5 | eqid | |- ( *r ` F ) = ( *r ` F ) |
|
| 6 | eqid | |- ( 0g ` F ) = ( 0g ` F ) |
|
| 7 | 2 1 3 4 5 6 | isphl | |- ( W e. PreHil <-> ( W e. LVec /\ F e. *Ring /\ A. x e. ( Base ` W ) ( ( y e. ( Base ` W ) |-> ( y ( .i ` W ) x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ( .i ` W ) x ) = ( 0g ` F ) -> x = ( 0g ` W ) ) /\ A. y e. ( Base ` W ) ( ( *r ` F ) ` ( x ( .i ` W ) y ) ) = ( y ( .i ` W ) x ) ) ) ) |
| 8 | 7 | simp2bi | |- ( W e. PreHil -> F e. *Ring ) |