This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication is jointly continuous in both arguments. (Contributed by NM, 16-Jun-2009) (Revised by Mario Carneiro, 5-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smcn.c | |- C = ( IndMet ` U ) |
|
| smcn.j | |- J = ( MetOpen ` C ) |
||
| smcn.s | |- S = ( .sOLD ` U ) |
||
| smcn.k | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | smcn | |- ( U e. NrmCVec -> S e. ( ( K tX J ) Cn J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smcn.c | |- C = ( IndMet ` U ) |
|
| 2 | smcn.j | |- J = ( MetOpen ` C ) |
|
| 3 | smcn.s | |- S = ( .sOLD ` U ) |
|
| 4 | smcn.k | |- K = ( TopOpen ` CCfld ) |
|
| 5 | fveq2 | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( .sOLD ` U ) = ( .sOLD ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 6 | 3 5 | eqtrid | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> S = ( .sOLD ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) |
| 7 | fveq2 | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( IndMet ` U ) = ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 8 | 1 7 | eqtrid | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> C = ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) |
| 9 | 8 | fveq2d | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( MetOpen ` C ) = ( MetOpen ` ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) ) |
| 10 | 2 9 | eqtrid | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> J = ( MetOpen ` ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) ) |
| 11 | 10 | oveq2d | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( K tX J ) = ( K tX ( MetOpen ` ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) ) ) |
| 12 | 11 10 | oveq12d | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( ( K tX J ) Cn J ) = ( ( K tX ( MetOpen ` ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) ) Cn ( MetOpen ` ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) ) ) |
| 13 | 6 12 | eleq12d | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( S e. ( ( K tX J ) Cn J ) <-> ( .sOLD ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) e. ( ( K tX ( MetOpen ` ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) ) Cn ( MetOpen ` ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) ) ) ) |
| 14 | eqid | |- ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) = ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) |
|
| 15 | eqid | |- ( MetOpen ` ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) = ( MetOpen ` ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 16 | eqid | |- ( .sOLD ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) = ( .sOLD ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) |
|
| 17 | eqid | |- ( BaseSet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) = ( BaseSet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) |
|
| 18 | eqid | |- ( normCV ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) = ( normCV ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) |
|
| 19 | elimnvu | |- if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) e. NrmCVec |
|
| 20 | eqid | |- ( 1 / ( 1 + ( ( ( ( ( normCV ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ` y ) + ( abs ` x ) ) + 1 ) / r ) ) ) = ( 1 / ( 1 + ( ( ( ( ( normCV ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ` y ) + ( abs ` x ) ) + 1 ) / r ) ) ) |
|
| 21 | 14 15 16 4 17 18 19 20 | smcnlem | |- ( .sOLD ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) e. ( ( K tX ( MetOpen ` ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) ) Cn ( MetOpen ` ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) ) |
| 22 | 13 21 | dedth | |- ( U e. NrmCVec -> S e. ( ( K tX J ) Cn J ) ) |