This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubadd.b | |- B = ( Base ` G ) |
|
| ablsubadd.p | |- .+ = ( +g ` G ) |
||
| ablsubadd.m | |- .- = ( -g ` G ) |
||
| ablsubsub.g | |- ( ph -> G e. Abel ) |
||
| ablsubsub.x | |- ( ph -> X e. B ) |
||
| ablsubsub.y | |- ( ph -> Y e. B ) |
||
| ablsubsub.z | |- ( ph -> Z e. B ) |
||
| Assertion | ablsubsub4 | |- ( ph -> ( ( X .- Y ) .- Z ) = ( X .- ( Y .+ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubadd.b | |- B = ( Base ` G ) |
|
| 2 | ablsubadd.p | |- .+ = ( +g ` G ) |
|
| 3 | ablsubadd.m | |- .- = ( -g ` G ) |
|
| 4 | ablsubsub.g | |- ( ph -> G e. Abel ) |
|
| 5 | ablsubsub.x | |- ( ph -> X e. B ) |
|
| 6 | ablsubsub.y | |- ( ph -> Y e. B ) |
|
| 7 | ablsubsub.z | |- ( ph -> Z e. B ) |
|
| 8 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 9 | 4 8 | syl | |- ( ph -> G e. Grp ) |
| 10 | 1 3 | grpsubcl | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) e. B ) |
| 11 | 9 5 6 10 | syl3anc | |- ( ph -> ( X .- Y ) e. B ) |
| 12 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 13 | 1 2 12 3 | grpsubval | |- ( ( ( X .- Y ) e. B /\ Z e. B ) -> ( ( X .- Y ) .- Z ) = ( ( X .- Y ) .+ ( ( invg ` G ) ` Z ) ) ) |
| 14 | 11 7 13 | syl2anc | |- ( ph -> ( ( X .- Y ) .- Z ) = ( ( X .- Y ) .+ ( ( invg ` G ) ` Z ) ) ) |
| 15 | 1 12 | grpinvcl | |- ( ( G e. Grp /\ Z e. B ) -> ( ( invg ` G ) ` Z ) e. B ) |
| 16 | 9 7 15 | syl2anc | |- ( ph -> ( ( invg ` G ) ` Z ) e. B ) |
| 17 | 1 2 3 4 5 6 16 | ablsubsub | |- ( ph -> ( X .- ( Y .- ( ( invg ` G ) ` Z ) ) ) = ( ( X .- Y ) .+ ( ( invg ` G ) ` Z ) ) ) |
| 18 | 1 2 3 12 9 6 7 | grpsubinv | |- ( ph -> ( Y .- ( ( invg ` G ) ` Z ) ) = ( Y .+ Z ) ) |
| 19 | 18 | oveq2d | |- ( ph -> ( X .- ( Y .- ( ( invg ` G ) ` Z ) ) ) = ( X .- ( Y .+ Z ) ) ) |
| 20 | 14 17 19 | 3eqtr2d | |- ( ph -> ( ( X .- Y ) .- Z ) = ( X .- ( Y .+ Z ) ) ) |