This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | |- F = ( Scalar ` W ) |
|
| phllmhm.h | |- ., = ( .i ` W ) |
||
| phllmhm.v | |- V = ( Base ` W ) |
||
| ipsubdir.m | |- .- = ( -g ` W ) |
||
| ipsubdir.s | |- S = ( -g ` F ) |
||
| Assertion | ipsubdir | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) ., C ) = ( ( A ., C ) S ( B ., C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | |- F = ( Scalar ` W ) |
|
| 2 | phllmhm.h | |- ., = ( .i ` W ) |
|
| 3 | phllmhm.v | |- V = ( Base ` W ) |
|
| 4 | ipsubdir.m | |- .- = ( -g ` W ) |
|
| 5 | ipsubdir.s | |- S = ( -g ` F ) |
|
| 6 | simpl | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. PreHil ) |
|
| 7 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 8 | 7 | adantr | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. LMod ) |
| 9 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 10 | 8 9 | syl | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. Grp ) |
| 11 | simpr1 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> A e. V ) |
|
| 12 | simpr2 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> B e. V ) |
|
| 13 | 3 4 | grpsubcl | |- ( ( W e. Grp /\ A e. V /\ B e. V ) -> ( A .- B ) e. V ) |
| 14 | 10 11 12 13 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A .- B ) e. V ) |
| 15 | simpr3 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> C e. V ) |
|
| 16 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 17 | eqid | |- ( +g ` F ) = ( +g ` F ) |
|
| 18 | 1 2 3 16 17 | ipdir | |- ( ( W e. PreHil /\ ( ( A .- B ) e. V /\ B e. V /\ C e. V ) ) -> ( ( ( A .- B ) ( +g ` W ) B ) ., C ) = ( ( ( A .- B ) ., C ) ( +g ` F ) ( B ., C ) ) ) |
| 19 | 6 14 12 15 18 | syl13anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( A .- B ) ( +g ` W ) B ) ., C ) = ( ( ( A .- B ) ., C ) ( +g ` F ) ( B ., C ) ) ) |
| 20 | 3 16 4 | grpnpcan | |- ( ( W e. Grp /\ A e. V /\ B e. V ) -> ( ( A .- B ) ( +g ` W ) B ) = A ) |
| 21 | 10 11 12 20 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) ( +g ` W ) B ) = A ) |
| 22 | 21 | oveq1d | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( A .- B ) ( +g ` W ) B ) ., C ) = ( A ., C ) ) |
| 23 | 19 22 | eqtr3d | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( A .- B ) ., C ) ( +g ` F ) ( B ., C ) ) = ( A ., C ) ) |
| 24 | 1 | lmodfgrp | |- ( W e. LMod -> F e. Grp ) |
| 25 | 8 24 | syl | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> F e. Grp ) |
| 26 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 27 | 1 2 3 26 | ipcl | |- ( ( W e. PreHil /\ A e. V /\ C e. V ) -> ( A ., C ) e. ( Base ` F ) ) |
| 28 | 6 11 15 27 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., C ) e. ( Base ` F ) ) |
| 29 | 1 2 3 26 | ipcl | |- ( ( W e. PreHil /\ B e. V /\ C e. V ) -> ( B ., C ) e. ( Base ` F ) ) |
| 30 | 6 12 15 29 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( B ., C ) e. ( Base ` F ) ) |
| 31 | 1 2 3 26 | ipcl | |- ( ( W e. PreHil /\ ( A .- B ) e. V /\ C e. V ) -> ( ( A .- B ) ., C ) e. ( Base ` F ) ) |
| 32 | 6 14 15 31 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) ., C ) e. ( Base ` F ) ) |
| 33 | 26 17 5 | grpsubadd | |- ( ( F e. Grp /\ ( ( A ., C ) e. ( Base ` F ) /\ ( B ., C ) e. ( Base ` F ) /\ ( ( A .- B ) ., C ) e. ( Base ` F ) ) ) -> ( ( ( A ., C ) S ( B ., C ) ) = ( ( A .- B ) ., C ) <-> ( ( ( A .- B ) ., C ) ( +g ` F ) ( B ., C ) ) = ( A ., C ) ) ) |
| 34 | 25 28 30 32 33 | syl13anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( A ., C ) S ( B ., C ) ) = ( ( A .- B ) ., C ) <-> ( ( ( A .- B ) ., C ) ( +g ` F ) ( B ., C ) ) = ( A ., C ) ) ) |
| 35 | 23 34 | mpbird | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A ., C ) S ( B ., C ) ) = ( ( A .- B ) ., C ) ) |
| 36 | 35 | eqcomd | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) ., C ) = ( ( A ., C ) S ( B ., C ) ) ) |