This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubadd.b | |- B = ( Base ` G ) |
|
| ablsubadd.p | |- .+ = ( +g ` G ) |
||
| ablsubadd.m | |- .- = ( -g ` G ) |
||
| ablsubsub.g | |- ( ph -> G e. Abel ) |
||
| ablsubsub.x | |- ( ph -> X e. B ) |
||
| ablsubsub.y | |- ( ph -> Y e. B ) |
||
| ablsubsub.z | |- ( ph -> Z e. B ) |
||
| Assertion | ablsubsub | |- ( ph -> ( X .- ( Y .- Z ) ) = ( ( X .- Y ) .+ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubadd.b | |- B = ( Base ` G ) |
|
| 2 | ablsubadd.p | |- .+ = ( +g ` G ) |
|
| 3 | ablsubadd.m | |- .- = ( -g ` G ) |
|
| 4 | ablsubsub.g | |- ( ph -> G e. Abel ) |
|
| 5 | ablsubsub.x | |- ( ph -> X e. B ) |
|
| 6 | ablsubsub.y | |- ( ph -> Y e. B ) |
|
| 7 | ablsubsub.z | |- ( ph -> Z e. B ) |
|
| 8 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 9 | 4 8 | syl | |- ( ph -> G e. Grp ) |
| 10 | 1 2 3 | grpsubsub | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .- ( Y .- Z ) ) = ( X .+ ( Z .- Y ) ) ) |
| 11 | 9 5 6 7 10 | syl13anc | |- ( ph -> ( X .- ( Y .- Z ) ) = ( X .+ ( Z .- Y ) ) ) |
| 12 | 1 2 3 | grpaddsubass | |- ( ( G e. Grp /\ ( X e. B /\ Z e. B /\ Y e. B ) ) -> ( ( X .+ Z ) .- Y ) = ( X .+ ( Z .- Y ) ) ) |
| 13 | 9 5 7 6 12 | syl13anc | |- ( ph -> ( ( X .+ Z ) .- Y ) = ( X .+ ( Z .- Y ) ) ) |
| 14 | 1 2 3 | abladdsub | |- ( ( G e. Abel /\ ( X e. B /\ Z e. B /\ Y e. B ) ) -> ( ( X .+ Z ) .- Y ) = ( ( X .- Y ) .+ Z ) ) |
| 15 | 4 5 7 6 14 | syl13anc | |- ( ph -> ( ( X .+ Z ) .- Y ) = ( ( X .- Y ) .+ Z ) ) |
| 16 | 11 13 15 | 3eqtr2d | |- ( ph -> ( X .- ( Y .- Z ) ) = ( ( X .- Y ) .+ Z ) ) |