This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscmn.b | |- B = ( Base ` G ) |
|
| iscmn.p | |- .+ = ( +g ` G ) |
||
| Assertion | isabl2 | |- ( G e. Abel <-> ( G e. Grp /\ A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmn.b | |- B = ( Base ` G ) |
|
| 2 | iscmn.p | |- .+ = ( +g ` G ) |
|
| 3 | isabl | |- ( G e. Abel <-> ( G e. Grp /\ G e. CMnd ) ) |
|
| 4 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 5 | 1 2 | iscmn | |- ( G e. CMnd <-> ( G e. Mnd /\ A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) ) ) |
| 6 | 5 | baib | |- ( G e. Mnd -> ( G e. CMnd <-> A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) ) ) |
| 7 | 4 6 | syl | |- ( G e. Grp -> ( G e. CMnd <-> A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) ) ) |
| 8 | 7 | pm5.32i | |- ( ( G e. Grp /\ G e. CMnd ) <-> ( G e. Grp /\ A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) ) ) |
| 9 | 3 8 | bitri | |- ( G e. Abel <-> ( G e. Grp /\ A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) ) ) |