This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablinvadd.b | |- B = ( Base ` G ) |
|
| ablinvadd.p | |- .+ = ( +g ` G ) |
||
| ablinvadd.n | |- N = ( invg ` G ) |
||
| Assertion | ablinvadd | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( N ` ( X .+ Y ) ) = ( ( N ` X ) .+ ( N ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablinvadd.b | |- B = ( Base ` G ) |
|
| 2 | ablinvadd.p | |- .+ = ( +g ` G ) |
|
| 3 | ablinvadd.n | |- N = ( invg ` G ) |
|
| 4 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 5 | 1 2 3 | grpinvadd | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( N ` ( X .+ Y ) ) = ( ( N ` Y ) .+ ( N ` X ) ) ) |
| 6 | 4 5 | syl3an1 | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( N ` ( X .+ Y ) ) = ( ( N ` Y ) .+ ( N ` X ) ) ) |
| 7 | simp1 | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> G e. Abel ) |
|
| 8 | 4 | 3ad2ant1 | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> G e. Grp ) |
| 9 | simp2 | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> X e. B ) |
|
| 10 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| 11 | 8 9 10 | syl2anc | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( N ` X ) e. B ) |
| 12 | simp3 | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 13 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ Y e. B ) -> ( N ` Y ) e. B ) |
| 14 | 8 12 13 | syl2anc | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( N ` Y ) e. B ) |
| 15 | 1 2 | ablcom | |- ( ( G e. Abel /\ ( N ` X ) e. B /\ ( N ` Y ) e. B ) -> ( ( N ` X ) .+ ( N ` Y ) ) = ( ( N ` Y ) .+ ( N ` X ) ) ) |
| 16 | 7 11 14 15 | syl3anc | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( ( N ` X ) .+ ( N ` Y ) ) = ( ( N ` Y ) .+ ( N ` X ) ) ) |
| 17 | 6 16 | eqtr4d | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( N ` ( X .+ Y ) ) = ( ( N ` X ) .+ ( N ` Y ) ) ) |