This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite set is not empty. For a shorter proof using ax-un , see infn0ALT . (Contributed by NM, 23-Oct-2004) Avoid ax-un . (Revised by BTernaryTau, 8-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infn0 | |- ( _om ~<_ A -> A =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi | |- ( _om ~<_ A -> E. f f : _om -1-1-> A ) |
|
| 2 | peano1 | |- (/) e. _om |
|
| 3 | f1f1orn | |- ( f : _om -1-1-> A -> f : _om -1-1-onto-> ran f ) |
|
| 4 | 3 | adantr | |- ( ( f : _om -1-1-> A /\ A = (/) ) -> f : _om -1-1-onto-> ran f ) |
| 5 | f1f | |- ( f : _om -1-1-> A -> f : _om --> A ) |
|
| 6 | 5 | frnd | |- ( f : _om -1-1-> A -> ran f C_ A ) |
| 7 | sseq0 | |- ( ( ran f C_ A /\ A = (/) ) -> ran f = (/) ) |
|
| 8 | 6 7 | sylan | |- ( ( f : _om -1-1-> A /\ A = (/) ) -> ran f = (/) ) |
| 9 | 8 | f1oeq3d | |- ( ( f : _om -1-1-> A /\ A = (/) ) -> ( f : _om -1-1-onto-> ran f <-> f : _om -1-1-onto-> (/) ) ) |
| 10 | 4 9 | mpbid | |- ( ( f : _om -1-1-> A /\ A = (/) ) -> f : _om -1-1-onto-> (/) ) |
| 11 | f1ocnv | |- ( f : _om -1-1-onto-> (/) -> `' f : (/) -1-1-onto-> _om ) |
|
| 12 | noel | |- -. (/) e. (/) |
|
| 13 | f1o00 | |- ( `' f : (/) -1-1-onto-> _om <-> ( `' f = (/) /\ _om = (/) ) ) |
|
| 14 | 13 | simprbi | |- ( `' f : (/) -1-1-onto-> _om -> _om = (/) ) |
| 15 | 14 | eleq2d | |- ( `' f : (/) -1-1-onto-> _om -> ( (/) e. _om <-> (/) e. (/) ) ) |
| 16 | 12 15 | mtbiri | |- ( `' f : (/) -1-1-onto-> _om -> -. (/) e. _om ) |
| 17 | 10 11 16 | 3syl | |- ( ( f : _om -1-1-> A /\ A = (/) ) -> -. (/) e. _om ) |
| 18 | 2 17 | mt2 | |- -. ( f : _om -1-1-> A /\ A = (/) ) |
| 19 | 18 | imnani | |- ( f : _om -1-1-> A -> -. A = (/) ) |
| 20 | 19 | neqned | |- ( f : _om -1-1-> A -> A =/= (/) ) |
| 21 | 20 | exlimiv | |- ( E. f f : _om -1-1-> A -> A =/= (/) ) |
| 22 | 1 21 | syl | |- ( _om ~<_ A -> A =/= (/) ) |