This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of finite intersections of an infinite well-orderable set is equinumerous to the set itself. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inffien | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( fi ` A ) ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infpwfien | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( ~P A i^i Fin ) ~~ A ) |
|
| 2 | relen | |- Rel ~~ |
|
| 3 | 2 | brrelex1i | |- ( ( ~P A i^i Fin ) ~~ A -> ( ~P A i^i Fin ) e. _V ) |
| 4 | 1 3 | syl | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( ~P A i^i Fin ) e. _V ) |
| 5 | difss | |- ( ( ~P A i^i Fin ) \ { (/) } ) C_ ( ~P A i^i Fin ) |
|
| 6 | ssdomg | |- ( ( ~P A i^i Fin ) e. _V -> ( ( ( ~P A i^i Fin ) \ { (/) } ) C_ ( ~P A i^i Fin ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ ( ~P A i^i Fin ) ) ) |
|
| 7 | 4 5 6 | mpisyl | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ ( ~P A i^i Fin ) ) |
| 8 | domentr | |- ( ( ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ ( ~P A i^i Fin ) /\ ( ~P A i^i Fin ) ~~ A ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ A ) |
|
| 9 | 7 1 8 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ A ) |
| 10 | numdom | |- ( ( A e. dom card /\ ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ A ) -> ( ( ~P A i^i Fin ) \ { (/) } ) e. dom card ) |
|
| 11 | 9 10 | syldan | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( ( ~P A i^i Fin ) \ { (/) } ) e. dom card ) |
| 12 | eqid | |- ( x e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| x ) = ( x e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| x ) |
|
| 13 | 12 | fifo | |- ( A e. dom card -> ( x e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| x ) : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) ) |
| 14 | 13 | adantr | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( x e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| x ) : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) ) |
| 15 | fodomnum | |- ( ( ( ~P A i^i Fin ) \ { (/) } ) e. dom card -> ( ( x e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| x ) : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) -> ( fi ` A ) ~<_ ( ( ~P A i^i Fin ) \ { (/) } ) ) ) |
|
| 16 | 11 14 15 | sylc | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( fi ` A ) ~<_ ( ( ~P A i^i Fin ) \ { (/) } ) ) |
| 17 | domtr | |- ( ( ( fi ` A ) ~<_ ( ( ~P A i^i Fin ) \ { (/) } ) /\ ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ A ) -> ( fi ` A ) ~<_ A ) |
|
| 18 | 16 9 17 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( fi ` A ) ~<_ A ) |
| 19 | fvex | |- ( fi ` A ) e. _V |
|
| 20 | ssfii | |- ( A e. dom card -> A C_ ( fi ` A ) ) |
|
| 21 | 20 | adantr | |- ( ( A e. dom card /\ _om ~<_ A ) -> A C_ ( fi ` A ) ) |
| 22 | ssdomg | |- ( ( fi ` A ) e. _V -> ( A C_ ( fi ` A ) -> A ~<_ ( fi ` A ) ) ) |
|
| 23 | 19 21 22 | mpsyl | |- ( ( A e. dom card /\ _om ~<_ A ) -> A ~<_ ( fi ` A ) ) |
| 24 | sbth | |- ( ( ( fi ` A ) ~<_ A /\ A ~<_ ( fi ` A ) ) -> ( fi ` A ) ~~ A ) |
|
| 25 | 18 23 24 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( fi ` A ) ~~ A ) |