This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infpssrlem.a | |- ( ph -> B C_ A ) |
|
| infpssrlem.c | |- ( ph -> F : B -1-1-onto-> A ) |
||
| infpssrlem.d | |- ( ph -> C e. ( A \ B ) ) |
||
| infpssrlem.e | |- G = ( rec ( `' F , C ) |` _om ) |
||
| Assertion | infpssrlem3 | |- ( ph -> G : _om --> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infpssrlem.a | |- ( ph -> B C_ A ) |
|
| 2 | infpssrlem.c | |- ( ph -> F : B -1-1-onto-> A ) |
|
| 3 | infpssrlem.d | |- ( ph -> C e. ( A \ B ) ) |
|
| 4 | infpssrlem.e | |- G = ( rec ( `' F , C ) |` _om ) |
|
| 5 | frfnom | |- ( rec ( `' F , C ) |` _om ) Fn _om |
|
| 6 | 4 | fneq1i | |- ( G Fn _om <-> ( rec ( `' F , C ) |` _om ) Fn _om ) |
| 7 | 5 6 | mpbir | |- G Fn _om |
| 8 | 7 | a1i | |- ( ph -> G Fn _om ) |
| 9 | fveq2 | |- ( c = (/) -> ( G ` c ) = ( G ` (/) ) ) |
|
| 10 | 9 | eleq1d | |- ( c = (/) -> ( ( G ` c ) e. A <-> ( G ` (/) ) e. A ) ) |
| 11 | fveq2 | |- ( c = b -> ( G ` c ) = ( G ` b ) ) |
|
| 12 | 11 | eleq1d | |- ( c = b -> ( ( G ` c ) e. A <-> ( G ` b ) e. A ) ) |
| 13 | fveq2 | |- ( c = suc b -> ( G ` c ) = ( G ` suc b ) ) |
|
| 14 | 13 | eleq1d | |- ( c = suc b -> ( ( G ` c ) e. A <-> ( G ` suc b ) e. A ) ) |
| 15 | 1 2 3 4 | infpssrlem1 | |- ( ph -> ( G ` (/) ) = C ) |
| 16 | 3 | eldifad | |- ( ph -> C e. A ) |
| 17 | 15 16 | eqeltrd | |- ( ph -> ( G ` (/) ) e. A ) |
| 18 | 1 | adantr | |- ( ( ph /\ ( G ` b ) e. A ) -> B C_ A ) |
| 19 | f1ocnv | |- ( F : B -1-1-onto-> A -> `' F : A -1-1-onto-> B ) |
|
| 20 | f1of | |- ( `' F : A -1-1-onto-> B -> `' F : A --> B ) |
|
| 21 | 2 19 20 | 3syl | |- ( ph -> `' F : A --> B ) |
| 22 | 21 | ffvelcdmda | |- ( ( ph /\ ( G ` b ) e. A ) -> ( `' F ` ( G ` b ) ) e. B ) |
| 23 | 18 22 | sseldd | |- ( ( ph /\ ( G ` b ) e. A ) -> ( `' F ` ( G ` b ) ) e. A ) |
| 24 | 1 2 3 4 | infpssrlem2 | |- ( b e. _om -> ( G ` suc b ) = ( `' F ` ( G ` b ) ) ) |
| 25 | 24 | eleq1d | |- ( b e. _om -> ( ( G ` suc b ) e. A <-> ( `' F ` ( G ` b ) ) e. A ) ) |
| 26 | 23 25 | imbitrrid | |- ( b e. _om -> ( ( ph /\ ( G ` b ) e. A ) -> ( G ` suc b ) e. A ) ) |
| 27 | 26 | expd | |- ( b e. _om -> ( ph -> ( ( G ` b ) e. A -> ( G ` suc b ) e. A ) ) ) |
| 28 | 10 12 14 17 27 | finds2 | |- ( c e. _om -> ( ph -> ( G ` c ) e. A ) ) |
| 29 | 28 | com12 | |- ( ph -> ( c e. _om -> ( G ` c ) e. A ) ) |
| 30 | 29 | ralrimiv | |- ( ph -> A. c e. _om ( G ` c ) e. A ) |
| 31 | ffnfv | |- ( G : _om --> A <-> ( G Fn _om /\ A. c e. _om ( G ` c ) e. A ) ) |
|
| 32 | 8 30 31 | sylanbrc | |- ( ph -> G : _om --> A ) |