This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infpssrlem.a | |- ( ph -> B C_ A ) |
|
| infpssrlem.c | |- ( ph -> F : B -1-1-onto-> A ) |
||
| infpssrlem.d | |- ( ph -> C e. ( A \ B ) ) |
||
| infpssrlem.e | |- G = ( rec ( `' F , C ) |` _om ) |
||
| Assertion | infpssrlem5 | |- ( ph -> ( A e. V -> _om ~<_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infpssrlem.a | |- ( ph -> B C_ A ) |
|
| 2 | infpssrlem.c | |- ( ph -> F : B -1-1-onto-> A ) |
|
| 3 | infpssrlem.d | |- ( ph -> C e. ( A \ B ) ) |
|
| 4 | infpssrlem.e | |- G = ( rec ( `' F , C ) |` _om ) |
|
| 5 | 1 2 3 4 | infpssrlem3 | |- ( ph -> G : _om --> A ) |
| 6 | simpll | |- ( ( ( ph /\ ( b e. _om /\ c e. _om ) ) /\ b e. c ) -> ph ) |
|
| 7 | simplrr | |- ( ( ( ph /\ ( b e. _om /\ c e. _om ) ) /\ b e. c ) -> c e. _om ) |
|
| 8 | simpr | |- ( ( ( ph /\ ( b e. _om /\ c e. _om ) ) /\ b e. c ) -> b e. c ) |
|
| 9 | 1 2 3 4 | infpssrlem4 | |- ( ( ph /\ c e. _om /\ b e. c ) -> ( G ` c ) =/= ( G ` b ) ) |
| 10 | 6 7 8 9 | syl3anc | |- ( ( ( ph /\ ( b e. _om /\ c e. _om ) ) /\ b e. c ) -> ( G ` c ) =/= ( G ` b ) ) |
| 11 | 10 | necomd | |- ( ( ( ph /\ ( b e. _om /\ c e. _om ) ) /\ b e. c ) -> ( G ` b ) =/= ( G ` c ) ) |
| 12 | simpll | |- ( ( ( ph /\ ( b e. _om /\ c e. _om ) ) /\ c e. b ) -> ph ) |
|
| 13 | simplrl | |- ( ( ( ph /\ ( b e. _om /\ c e. _om ) ) /\ c e. b ) -> b e. _om ) |
|
| 14 | simpr | |- ( ( ( ph /\ ( b e. _om /\ c e. _om ) ) /\ c e. b ) -> c e. b ) |
|
| 15 | 1 2 3 4 | infpssrlem4 | |- ( ( ph /\ b e. _om /\ c e. b ) -> ( G ` b ) =/= ( G ` c ) ) |
| 16 | 12 13 14 15 | syl3anc | |- ( ( ( ph /\ ( b e. _om /\ c e. _om ) ) /\ c e. b ) -> ( G ` b ) =/= ( G ` c ) ) |
| 17 | 11 16 | jaodan | |- ( ( ( ph /\ ( b e. _om /\ c e. _om ) ) /\ ( b e. c \/ c e. b ) ) -> ( G ` b ) =/= ( G ` c ) ) |
| 18 | 17 | ex | |- ( ( ph /\ ( b e. _om /\ c e. _om ) ) -> ( ( b e. c \/ c e. b ) -> ( G ` b ) =/= ( G ` c ) ) ) |
| 19 | 18 | necon2bd | |- ( ( ph /\ ( b e. _om /\ c e. _om ) ) -> ( ( G ` b ) = ( G ` c ) -> -. ( b e. c \/ c e. b ) ) ) |
| 20 | nnord | |- ( b e. _om -> Ord b ) |
|
| 21 | nnord | |- ( c e. _om -> Ord c ) |
|
| 22 | ordtri3 | |- ( ( Ord b /\ Ord c ) -> ( b = c <-> -. ( b e. c \/ c e. b ) ) ) |
|
| 23 | 20 21 22 | syl2an | |- ( ( b e. _om /\ c e. _om ) -> ( b = c <-> -. ( b e. c \/ c e. b ) ) ) |
| 24 | 23 | adantl | |- ( ( ph /\ ( b e. _om /\ c e. _om ) ) -> ( b = c <-> -. ( b e. c \/ c e. b ) ) ) |
| 25 | 19 24 | sylibrd | |- ( ( ph /\ ( b e. _om /\ c e. _om ) ) -> ( ( G ` b ) = ( G ` c ) -> b = c ) ) |
| 26 | 25 | ralrimivva | |- ( ph -> A. b e. _om A. c e. _om ( ( G ` b ) = ( G ` c ) -> b = c ) ) |
| 27 | dff13 | |- ( G : _om -1-1-> A <-> ( G : _om --> A /\ A. b e. _om A. c e. _om ( ( G ` b ) = ( G ` c ) -> b = c ) ) ) |
|
| 28 | 5 26 27 | sylanbrc | |- ( ph -> G : _om -1-1-> A ) |
| 29 | f1domg | |- ( A e. V -> ( G : _om -1-1-> A -> _om ~<_ A ) ) |
|
| 30 | 28 29 | syl5com | |- ( ph -> ( A e. V -> _om ~<_ A ) ) |