This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infpssrlem.a | |- ( ph -> B C_ A ) |
|
| infpssrlem.c | |- ( ph -> F : B -1-1-onto-> A ) |
||
| infpssrlem.d | |- ( ph -> C e. ( A \ B ) ) |
||
| infpssrlem.e | |- G = ( rec ( `' F , C ) |` _om ) |
||
| Assertion | infpssrlem2 | |- ( M e. _om -> ( G ` suc M ) = ( `' F ` ( G ` M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infpssrlem.a | |- ( ph -> B C_ A ) |
|
| 2 | infpssrlem.c | |- ( ph -> F : B -1-1-onto-> A ) |
|
| 3 | infpssrlem.d | |- ( ph -> C e. ( A \ B ) ) |
|
| 4 | infpssrlem.e | |- G = ( rec ( `' F , C ) |` _om ) |
|
| 5 | frsuc | |- ( M e. _om -> ( ( rec ( `' F , C ) |` _om ) ` suc M ) = ( `' F ` ( ( rec ( `' F , C ) |` _om ) ` M ) ) ) |
|
| 6 | 4 | fveq1i | |- ( G ` suc M ) = ( ( rec ( `' F , C ) |` _om ) ` suc M ) |
| 7 | 4 | fveq1i | |- ( G ` M ) = ( ( rec ( `' F , C ) |` _om ) ` M ) |
| 8 | 7 | fveq2i | |- ( `' F ` ( G ` M ) ) = ( `' F ` ( ( rec ( `' F , C ) |` _om ) ` M ) ) |
| 9 | 5 6 8 | 3eqtr4g | |- ( M e. _om -> ( G ` suc M ) = ( `' F ` ( G ` M ) ) ) |