This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infpssr | |- ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssnel | |- ( X C. A -> E. y ( y e. A /\ -. y e. X ) ) |
|
| 2 | 1 | adantr | |- ( ( X C. A /\ X ~~ A ) -> E. y ( y e. A /\ -. y e. X ) ) |
| 3 | eldif | |- ( y e. ( A \ X ) <-> ( y e. A /\ -. y e. X ) ) |
|
| 4 | pssss | |- ( X C. A -> X C_ A ) |
|
| 5 | bren | |- ( X ~~ A <-> E. f f : X -1-1-onto-> A ) |
|
| 6 | simpr | |- ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> f : X -1-1-onto-> A ) |
|
| 7 | f1ofo | |- ( f : X -1-1-onto-> A -> f : X -onto-> A ) |
|
| 8 | forn | |- ( f : X -onto-> A -> ran f = A ) |
|
| 9 | 6 7 8 | 3syl | |- ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> ran f = A ) |
| 10 | vex | |- f e. _V |
|
| 11 | 10 | rnex | |- ran f e. _V |
| 12 | 9 11 | eqeltrrdi | |- ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> A e. _V ) |
| 13 | simplr | |- ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> X C_ A ) |
|
| 14 | simpll | |- ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> y e. ( A \ X ) ) |
|
| 15 | eqid | |- ( rec ( `' f , y ) |` _om ) = ( rec ( `' f , y ) |` _om ) |
|
| 16 | 13 6 14 15 | infpssrlem5 | |- ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> ( A e. _V -> _om ~<_ A ) ) |
| 17 | 12 16 | mpd | |- ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> _om ~<_ A ) |
| 18 | 17 | ex | |- ( ( y e. ( A \ X ) /\ X C_ A ) -> ( f : X -1-1-onto-> A -> _om ~<_ A ) ) |
| 19 | 18 | exlimdv | |- ( ( y e. ( A \ X ) /\ X C_ A ) -> ( E. f f : X -1-1-onto-> A -> _om ~<_ A ) ) |
| 20 | 5 19 | biimtrid | |- ( ( y e. ( A \ X ) /\ X C_ A ) -> ( X ~~ A -> _om ~<_ A ) ) |
| 21 | 20 | ex | |- ( y e. ( A \ X ) -> ( X C_ A -> ( X ~~ A -> _om ~<_ A ) ) ) |
| 22 | 4 21 | syl5 | |- ( y e. ( A \ X ) -> ( X C. A -> ( X ~~ A -> _om ~<_ A ) ) ) |
| 23 | 22 | impd | |- ( y e. ( A \ X ) -> ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) ) |
| 24 | 3 23 | sylbir | |- ( ( y e. A /\ -. y e. X ) -> ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) ) |
| 25 | 24 | exlimiv | |- ( E. y ( y e. A /\ -. y e. X ) -> ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) ) |
| 26 | 2 25 | mpcom | |- ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) |