This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difsnen | |- ( ( X e. V /\ A e. X /\ B e. X ) -> ( X \ { A } ) ~~ ( X \ { B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexg | |- ( X e. V -> ( X \ { A } ) e. _V ) |
|
| 2 | enrefg | |- ( ( X \ { A } ) e. _V -> ( X \ { A } ) ~~ ( X \ { A } ) ) |
|
| 3 | 1 2 | syl | |- ( X e. V -> ( X \ { A } ) ~~ ( X \ { A } ) ) |
| 4 | 3 | 3ad2ant1 | |- ( ( X e. V /\ A e. X /\ B e. X ) -> ( X \ { A } ) ~~ ( X \ { A } ) ) |
| 5 | sneq | |- ( A = B -> { A } = { B } ) |
|
| 6 | 5 | difeq2d | |- ( A = B -> ( X \ { A } ) = ( X \ { B } ) ) |
| 7 | 6 | breq2d | |- ( A = B -> ( ( X \ { A } ) ~~ ( X \ { A } ) <-> ( X \ { A } ) ~~ ( X \ { B } ) ) ) |
| 8 | 4 7 | syl5ibcom | |- ( ( X e. V /\ A e. X /\ B e. X ) -> ( A = B -> ( X \ { A } ) ~~ ( X \ { B } ) ) ) |
| 9 | 8 | imp | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A = B ) -> ( X \ { A } ) ~~ ( X \ { B } ) ) |
| 10 | simpl1 | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> X e. V ) |
|
| 11 | difexg | |- ( ( X \ { A } ) e. _V -> ( ( X \ { A } ) \ { B } ) e. _V ) |
|
| 12 | enrefg | |- ( ( ( X \ { A } ) \ { B } ) e. _V -> ( ( X \ { A } ) \ { B } ) ~~ ( ( X \ { A } ) \ { B } ) ) |
|
| 13 | 10 1 11 12 | 4syl | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> ( ( X \ { A } ) \ { B } ) ~~ ( ( X \ { A } ) \ { B } ) ) |
| 14 | dif32 | |- ( ( X \ { A } ) \ { B } ) = ( ( X \ { B } ) \ { A } ) |
|
| 15 | 13 14 | breqtrdi | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> ( ( X \ { A } ) \ { B } ) ~~ ( ( X \ { B } ) \ { A } ) ) |
| 16 | simpl3 | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> B e. X ) |
|
| 17 | simpl2 | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> A e. X ) |
|
| 18 | en2sn | |- ( ( B e. X /\ A e. X ) -> { B } ~~ { A } ) |
|
| 19 | 16 17 18 | syl2anc | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> { B } ~~ { A } ) |
| 20 | disjdifr | |- ( ( ( X \ { A } ) \ { B } ) i^i { B } ) = (/) |
|
| 21 | 20 | a1i | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> ( ( ( X \ { A } ) \ { B } ) i^i { B } ) = (/) ) |
| 22 | disjdifr | |- ( ( ( X \ { B } ) \ { A } ) i^i { A } ) = (/) |
|
| 23 | 22 | a1i | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> ( ( ( X \ { B } ) \ { A } ) i^i { A } ) = (/) ) |
| 24 | unen | |- ( ( ( ( ( X \ { A } ) \ { B } ) ~~ ( ( X \ { B } ) \ { A } ) /\ { B } ~~ { A } ) /\ ( ( ( ( X \ { A } ) \ { B } ) i^i { B } ) = (/) /\ ( ( ( X \ { B } ) \ { A } ) i^i { A } ) = (/) ) ) -> ( ( ( X \ { A } ) \ { B } ) u. { B } ) ~~ ( ( ( X \ { B } ) \ { A } ) u. { A } ) ) |
|
| 25 | 15 19 21 23 24 | syl22anc | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> ( ( ( X \ { A } ) \ { B } ) u. { B } ) ~~ ( ( ( X \ { B } ) \ { A } ) u. { A } ) ) |
| 26 | simpr | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> A =/= B ) |
|
| 27 | 26 | necomd | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> B =/= A ) |
| 28 | eldifsn | |- ( B e. ( X \ { A } ) <-> ( B e. X /\ B =/= A ) ) |
|
| 29 | 16 27 28 | sylanbrc | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> B e. ( X \ { A } ) ) |
| 30 | difsnid | |- ( B e. ( X \ { A } ) -> ( ( ( X \ { A } ) \ { B } ) u. { B } ) = ( X \ { A } ) ) |
|
| 31 | 29 30 | syl | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> ( ( ( X \ { A } ) \ { B } ) u. { B } ) = ( X \ { A } ) ) |
| 32 | eldifsn | |- ( A e. ( X \ { B } ) <-> ( A e. X /\ A =/= B ) ) |
|
| 33 | 17 26 32 | sylanbrc | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> A e. ( X \ { B } ) ) |
| 34 | difsnid | |- ( A e. ( X \ { B } ) -> ( ( ( X \ { B } ) \ { A } ) u. { A } ) = ( X \ { B } ) ) |
|
| 35 | 33 34 | syl | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> ( ( ( X \ { B } ) \ { A } ) u. { A } ) = ( X \ { B } ) ) |
| 36 | 25 31 35 | 3brtr3d | |- ( ( ( X e. V /\ A e. X /\ B e. X ) /\ A =/= B ) -> ( X \ { A } ) ~~ ( X \ { B } ) ) |
| 37 | 9 36 | pm2.61dane | |- ( ( X e. V /\ A e. X /\ B e. X ) -> ( X \ { A } ) ~~ ( X \ { B } ) ) |