This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limenpsi.1 | |- Lim A |
|
| Assertion | limenpsi | |- ( A e. V -> A ~~ ( A \ { (/) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limenpsi.1 | |- Lim A |
|
| 2 | difexg | |- ( A e. V -> ( A \ { (/) } ) e. _V ) |
|
| 3 | limsuc | |- ( Lim A -> ( x e. A <-> suc x e. A ) ) |
|
| 4 | 1 3 | ax-mp | |- ( x e. A <-> suc x e. A ) |
| 5 | 4 | biimpi | |- ( x e. A -> suc x e. A ) |
| 6 | nsuceq0 | |- suc x =/= (/) |
|
| 7 | eldifsn | |- ( suc x e. ( A \ { (/) } ) <-> ( suc x e. A /\ suc x =/= (/) ) ) |
|
| 8 | 5 6 7 | sylanblrc | |- ( x e. A -> suc x e. ( A \ { (/) } ) ) |
| 9 | limord | |- ( Lim A -> Ord A ) |
|
| 10 | 1 9 | ax-mp | |- Ord A |
| 11 | ordelon | |- ( ( Ord A /\ x e. A ) -> x e. On ) |
|
| 12 | 10 11 | mpan | |- ( x e. A -> x e. On ) |
| 13 | ordelon | |- ( ( Ord A /\ y e. A ) -> y e. On ) |
|
| 14 | 10 13 | mpan | |- ( y e. A -> y e. On ) |
| 15 | suc11 | |- ( ( x e. On /\ y e. On ) -> ( suc x = suc y <-> x = y ) ) |
|
| 16 | 12 14 15 | syl2an | |- ( ( x e. A /\ y e. A ) -> ( suc x = suc y <-> x = y ) ) |
| 17 | 8 16 | dom3 | |- ( ( A e. V /\ ( A \ { (/) } ) e. _V ) -> A ~<_ ( A \ { (/) } ) ) |
| 18 | 2 17 | mpdan | |- ( A e. V -> A ~<_ ( A \ { (/) } ) ) |
| 19 | difss | |- ( A \ { (/) } ) C_ A |
|
| 20 | ssdomg | |- ( A e. V -> ( ( A \ { (/) } ) C_ A -> ( A \ { (/) } ) ~<_ A ) ) |
|
| 21 | 19 20 | mpi | |- ( A e. V -> ( A \ { (/) } ) ~<_ A ) |
| 22 | sbth | |- ( ( A ~<_ ( A \ { (/) } ) /\ ( A \ { (/) } ) ~<_ A ) -> A ~~ ( A \ { (/) } ) ) |
|
| 23 | 18 21 22 | syl2anc | |- ( A e. V -> A ~~ ( A \ { (/) } ) ) |