This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Omega is a limit ordinal. Theorem 2.8 of BellMachover p. 473. Theorem 1.23 of Schloeder p. 4. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995) (Proof shortened by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limom | |- Lim _om |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom | |- Ord _om |
|
| 2 | ordeleqon | |- ( Ord _om <-> ( _om e. On \/ _om = On ) ) |
|
| 3 | ordirr | |- ( Ord _om -> -. _om e. _om ) |
|
| 4 | 1 3 | ax-mp | |- -. _om e. _om |
| 5 | elom | |- ( _om e. _om <-> ( _om e. On /\ A. x ( Lim x -> _om e. x ) ) ) |
|
| 6 | 5 | baib | |- ( _om e. On -> ( _om e. _om <-> A. x ( Lim x -> _om e. x ) ) ) |
| 7 | 4 6 | mtbii | |- ( _om e. On -> -. A. x ( Lim x -> _om e. x ) ) |
| 8 | limomss | |- ( Lim x -> _om C_ x ) |
|
| 9 | limord | |- ( Lim x -> Ord x ) |
|
| 10 | ordsseleq | |- ( ( Ord _om /\ Ord x ) -> ( _om C_ x <-> ( _om e. x \/ _om = x ) ) ) |
|
| 11 | 1 9 10 | sylancr | |- ( Lim x -> ( _om C_ x <-> ( _om e. x \/ _om = x ) ) ) |
| 12 | 8 11 | mpbid | |- ( Lim x -> ( _om e. x \/ _om = x ) ) |
| 13 | 12 | ord | |- ( Lim x -> ( -. _om e. x -> _om = x ) ) |
| 14 | limeq | |- ( _om = x -> ( Lim _om <-> Lim x ) ) |
|
| 15 | 14 | biimprcd | |- ( Lim x -> ( _om = x -> Lim _om ) ) |
| 16 | 13 15 | syld | |- ( Lim x -> ( -. _om e. x -> Lim _om ) ) |
| 17 | 16 | con1d | |- ( Lim x -> ( -. Lim _om -> _om e. x ) ) |
| 18 | 17 | com12 | |- ( -. Lim _om -> ( Lim x -> _om e. x ) ) |
| 19 | 18 | alrimiv | |- ( -. Lim _om -> A. x ( Lim x -> _om e. x ) ) |
| 20 | 7 19 | nsyl2 | |- ( _om e. On -> Lim _om ) |
| 21 | limon | |- Lim On |
|
| 22 | limeq | |- ( _om = On -> ( Lim _om <-> Lim On ) ) |
|
| 23 | 21 22 | mpbiri | |- ( _om = On -> Lim _om ) |
| 24 | 20 23 | jaoi | |- ( ( _om e. On \/ _om = On ) -> Lim _om ) |
| 25 | 2 24 | sylbi | |- ( Ord _om -> Lim _om ) |
| 26 | 1 25 | ax-mp | |- Lim _om |