This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Removing a finite set from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infdiffi | |- ( ( _om ~<_ A /\ B e. Fin ) -> ( A \ B ) ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 | |- ( x = (/) -> ( A \ x ) = ( A \ (/) ) ) |
|
| 2 | dif0 | |- ( A \ (/) ) = A |
|
| 3 | 1 2 | eqtrdi | |- ( x = (/) -> ( A \ x ) = A ) |
| 4 | 3 | breq1d | |- ( x = (/) -> ( ( A \ x ) ~~ A <-> A ~~ A ) ) |
| 5 | 4 | imbi2d | |- ( x = (/) -> ( ( _om ~<_ A -> ( A \ x ) ~~ A ) <-> ( _om ~<_ A -> A ~~ A ) ) ) |
| 6 | difeq2 | |- ( x = y -> ( A \ x ) = ( A \ y ) ) |
|
| 7 | 6 | breq1d | |- ( x = y -> ( ( A \ x ) ~~ A <-> ( A \ y ) ~~ A ) ) |
| 8 | 7 | imbi2d | |- ( x = y -> ( ( _om ~<_ A -> ( A \ x ) ~~ A ) <-> ( _om ~<_ A -> ( A \ y ) ~~ A ) ) ) |
| 9 | difeq2 | |- ( x = ( y u. { z } ) -> ( A \ x ) = ( A \ ( y u. { z } ) ) ) |
|
| 10 | difun1 | |- ( A \ ( y u. { z } ) ) = ( ( A \ y ) \ { z } ) |
|
| 11 | 9 10 | eqtrdi | |- ( x = ( y u. { z } ) -> ( A \ x ) = ( ( A \ y ) \ { z } ) ) |
| 12 | 11 | breq1d | |- ( x = ( y u. { z } ) -> ( ( A \ x ) ~~ A <-> ( ( A \ y ) \ { z } ) ~~ A ) ) |
| 13 | 12 | imbi2d | |- ( x = ( y u. { z } ) -> ( ( _om ~<_ A -> ( A \ x ) ~~ A ) <-> ( _om ~<_ A -> ( ( A \ y ) \ { z } ) ~~ A ) ) ) |
| 14 | difeq2 | |- ( x = B -> ( A \ x ) = ( A \ B ) ) |
|
| 15 | 14 | breq1d | |- ( x = B -> ( ( A \ x ) ~~ A <-> ( A \ B ) ~~ A ) ) |
| 16 | 15 | imbi2d | |- ( x = B -> ( ( _om ~<_ A -> ( A \ x ) ~~ A ) <-> ( _om ~<_ A -> ( A \ B ) ~~ A ) ) ) |
| 17 | reldom | |- Rel ~<_ |
|
| 18 | 17 | brrelex2i | |- ( _om ~<_ A -> A e. _V ) |
| 19 | enrefg | |- ( A e. _V -> A ~~ A ) |
|
| 20 | 18 19 | syl | |- ( _om ~<_ A -> A ~~ A ) |
| 21 | domen2 | |- ( ( A \ y ) ~~ A -> ( _om ~<_ ( A \ y ) <-> _om ~<_ A ) ) |
|
| 22 | 21 | biimparc | |- ( ( _om ~<_ A /\ ( A \ y ) ~~ A ) -> _om ~<_ ( A \ y ) ) |
| 23 | infdifsn | |- ( _om ~<_ ( A \ y ) -> ( ( A \ y ) \ { z } ) ~~ ( A \ y ) ) |
|
| 24 | 22 23 | syl | |- ( ( _om ~<_ A /\ ( A \ y ) ~~ A ) -> ( ( A \ y ) \ { z } ) ~~ ( A \ y ) ) |
| 25 | entr | |- ( ( ( ( A \ y ) \ { z } ) ~~ ( A \ y ) /\ ( A \ y ) ~~ A ) -> ( ( A \ y ) \ { z } ) ~~ A ) |
|
| 26 | 24 25 | sylancom | |- ( ( _om ~<_ A /\ ( A \ y ) ~~ A ) -> ( ( A \ y ) \ { z } ) ~~ A ) |
| 27 | 26 | ex | |- ( _om ~<_ A -> ( ( A \ y ) ~~ A -> ( ( A \ y ) \ { z } ) ~~ A ) ) |
| 28 | 27 | a2i | |- ( ( _om ~<_ A -> ( A \ y ) ~~ A ) -> ( _om ~<_ A -> ( ( A \ y ) \ { z } ) ~~ A ) ) |
| 29 | 28 | a1i | |- ( y e. Fin -> ( ( _om ~<_ A -> ( A \ y ) ~~ A ) -> ( _om ~<_ A -> ( ( A \ y ) \ { z } ) ~~ A ) ) ) |
| 30 | 5 8 13 16 20 29 | findcard2 | |- ( B e. Fin -> ( _om ~<_ A -> ( A \ B ) ~~ A ) ) |
| 31 | 30 | impcom | |- ( ( _om ~<_ A /\ B e. Fin ) -> ( A \ B ) ~~ A ) |