This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weakly inaccessible cardinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | winalim | |- ( A e. InaccW -> Lim A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | winainf | |- ( A e. InaccW -> _om C_ A ) |
|
| 2 | winacard | |- ( A e. InaccW -> ( card ` A ) = A ) |
|
| 3 | cardlim | |- ( _om C_ ( card ` A ) <-> Lim ( card ` A ) ) |
|
| 4 | sseq2 | |- ( ( card ` A ) = A -> ( _om C_ ( card ` A ) <-> _om C_ A ) ) |
|
| 5 | limeq | |- ( ( card ` A ) = A -> ( Lim ( card ` A ) <-> Lim A ) ) |
|
| 6 | 4 5 | bibi12d | |- ( ( card ` A ) = A -> ( ( _om C_ ( card ` A ) <-> Lim ( card ` A ) ) <-> ( _om C_ A <-> Lim A ) ) ) |
| 7 | 3 6 | mpbii | |- ( ( card ` A ) = A -> ( _om C_ A <-> Lim A ) ) |
| 8 | 2 7 | syl | |- ( A e. InaccW -> ( _om C_ A <-> Lim A ) ) |
| 9 | 1 8 | mpbid | |- ( A e. InaccW -> Lim A ) |