This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a ring under an injection is a ring ( imasmndf1 analog). (Contributed by AV, 27-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasringf1.u | |- U = ( F "s R ) |
|
| imasringf1.v | |- V = ( Base ` R ) |
||
| Assertion | imasringf1 | |- ( ( F : V -1-1-> B /\ R e. Ring ) -> U e. Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasringf1.u | |- U = ( F "s R ) |
|
| 2 | imasringf1.v | |- V = ( Base ` R ) |
|
| 3 | 1 | a1i | |- ( ( F : V -1-1-> B /\ R e. Ring ) -> U = ( F "s R ) ) |
| 4 | 2 | a1i | |- ( ( F : V -1-1-> B /\ R e. Ring ) -> V = ( Base ` R ) ) |
| 5 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 6 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 7 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 8 | f1f1orn | |- ( F : V -1-1-> B -> F : V -1-1-onto-> ran F ) |
|
| 9 | 8 | adantr | |- ( ( F : V -1-1-> B /\ R e. Ring ) -> F : V -1-1-onto-> ran F ) |
| 10 | f1ofo | |- ( F : V -1-1-onto-> ran F -> F : V -onto-> ran F ) |
|
| 11 | 9 10 | syl | |- ( ( F : V -1-1-> B /\ R e. Ring ) -> F : V -onto-> ran F ) |
| 12 | 9 | f1ocpbl | |- ( ( ( F : V -1-1-> B /\ R e. Ring ) /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) ) ) |
| 13 | 9 | f1ocpbl | |- ( ( ( F : V -1-1-> B /\ R e. Ring ) /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( .r ` R ) b ) ) = ( F ` ( p ( .r ` R ) q ) ) ) ) |
| 14 | simpr | |- ( ( F : V -1-1-> B /\ R e. Ring ) -> R e. Ring ) |
|
| 15 | 3 4 5 6 7 11 12 13 14 | imasring | |- ( ( F : V -1-1-> B /\ R e. Ring ) -> ( U e. Ring /\ ( F ` ( 1r ` R ) ) = ( 1r ` U ) ) ) |
| 16 | 15 | simpld | |- ( ( F : V -1-1-> B /\ R e. Ring ) -> U e. Ring ) |