This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a ring. (Contributed by NM, 2-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isringd.b | |- ( ph -> B = ( Base ` R ) ) |
|
| isringd.p | |- ( ph -> .+ = ( +g ` R ) ) |
||
| isringd.t | |- ( ph -> .x. = ( .r ` R ) ) |
||
| isringd.g | |- ( ph -> R e. Grp ) |
||
| isringd.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .x. y ) e. B ) |
||
| isringd.a | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
||
| isringd.d | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
||
| isringd.e | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
||
| isringd.u | |- ( ph -> .1. e. B ) |
||
| isringd.i | |- ( ( ph /\ x e. B ) -> ( .1. .x. x ) = x ) |
||
| isringd.h | |- ( ( ph /\ x e. B ) -> ( x .x. .1. ) = x ) |
||
| Assertion | isringd | |- ( ph -> R e. Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isringd.b | |- ( ph -> B = ( Base ` R ) ) |
|
| 2 | isringd.p | |- ( ph -> .+ = ( +g ` R ) ) |
|
| 3 | isringd.t | |- ( ph -> .x. = ( .r ` R ) ) |
|
| 4 | isringd.g | |- ( ph -> R e. Grp ) |
|
| 5 | isringd.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .x. y ) e. B ) |
|
| 6 | isringd.a | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
|
| 7 | isringd.d | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
|
| 8 | isringd.e | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
|
| 9 | isringd.u | |- ( ph -> .1. e. B ) |
|
| 10 | isringd.i | |- ( ( ph /\ x e. B ) -> ( .1. .x. x ) = x ) |
|
| 11 | isringd.h | |- ( ( ph /\ x e. B ) -> ( x .x. .1. ) = x ) |
|
| 12 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 13 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 14 | 12 13 | mgpbas | |- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 15 | 1 14 | eqtrdi | |- ( ph -> B = ( Base ` ( mulGrp ` R ) ) ) |
| 16 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 17 | 12 16 | mgpplusg | |- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 18 | 3 17 | eqtrdi | |- ( ph -> .x. = ( +g ` ( mulGrp ` R ) ) ) |
| 19 | 15 18 5 6 9 10 11 | ismndd | |- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 20 | 1 | eleq2d | |- ( ph -> ( x e. B <-> x e. ( Base ` R ) ) ) |
| 21 | 1 | eleq2d | |- ( ph -> ( y e. B <-> y e. ( Base ` R ) ) ) |
| 22 | 1 | eleq2d | |- ( ph -> ( z e. B <-> z e. ( Base ` R ) ) ) |
| 23 | 20 21 22 | 3anbi123d | |- ( ph -> ( ( x e. B /\ y e. B /\ z e. B ) <-> ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) ) |
| 24 | 23 | biimpar | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( x e. B /\ y e. B /\ z e. B ) ) |
| 25 | 3 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> .x. = ( .r ` R ) ) |
| 26 | eqidd | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> x = x ) |
|
| 27 | 2 | oveqdr | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( y .+ z ) = ( y ( +g ` R ) z ) ) |
| 28 | 25 26 27 | oveq123d | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x .x. ( y .+ z ) ) = ( x ( .r ` R ) ( y ( +g ` R ) z ) ) ) |
| 29 | 2 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> .+ = ( +g ` R ) ) |
| 30 | 3 | oveqdr | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x .x. y ) = ( x ( .r ` R ) y ) ) |
| 31 | 3 | oveqdr | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x .x. z ) = ( x ( .r ` R ) z ) ) |
| 32 | 29 30 31 | oveq123d | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .x. y ) .+ ( x .x. z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) ) |
| 33 | 7 28 32 | 3eqtr3d | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) ) |
| 34 | 2 | oveqdr | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x .+ y ) = ( x ( +g ` R ) y ) ) |
| 35 | eqidd | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> z = z ) |
|
| 36 | 25 34 35 | oveq123d | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .x. z ) = ( ( x ( +g ` R ) y ) ( .r ` R ) z ) ) |
| 37 | 3 | oveqdr | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( y .x. z ) = ( y ( .r ` R ) z ) ) |
| 38 | 29 31 37 | oveq123d | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .x. z ) .+ ( y .x. z ) ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) |
| 39 | 8 36 38 | 3eqtr3d | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) |
| 40 | 33 39 | jca | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) |
| 41 | 24 40 | syldan | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) |
| 42 | 41 | ralrimivvva | |- ( ph -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) |
| 43 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 44 | 13 12 43 16 | isring | |- ( R e. Ring <-> ( R e. Grp /\ ( mulGrp ` R ) e. Mnd /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) ) |
| 45 | 4 19 42 44 | syl3anbrc | |- ( ph -> R e. Ring ) |