This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasring.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasring.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasring.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| imasring.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| imasring.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| imasring.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imasring.e1 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) | ||
| imasring.e2 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) | ||
| imasring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| Assertion | imasring | ⊢ ( 𝜑 → ( 𝑈 ∈ Ring ∧ ( 𝐹 ‘ 1 ) = ( 1r ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasring.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasring.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasring.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | imasring.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | imasring.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 6 | imasring.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 7 | imasring.e1 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) | |
| 8 | imasring.e2 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) | |
| 9 | imasring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 10 | 1 2 6 9 | imasbas | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑈 ) ) |
| 11 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) ) | |
| 12 | eqidd | ⊢ ( 𝜑 → ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) ) | |
| 13 | 3 | a1i | ⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) |
| 14 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 15 | 9 14 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 16 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 17 | 1 2 13 6 7 15 16 | imasgrp | ⊢ ( 𝜑 → ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑈 ) ) ) |
| 18 | 17 | simpld | ⊢ ( 𝜑 → 𝑈 ∈ Grp ) |
| 19 | eqid | ⊢ ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) | |
| 20 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑅 ∈ Ring ) |
| 21 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑢 ∈ 𝑉 ) | |
| 22 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 23 | 21 22 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑢 ∈ ( Base ‘ 𝑅 ) ) |
| 24 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑣 ∈ 𝑉 ) | |
| 25 | 24 22 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑣 ∈ ( Base ‘ 𝑅 ) ) |
| 26 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 27 | 26 4 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 · 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
| 28 | 20 23 25 27 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 · 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 | 28 22 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 · 𝑣 ) ∈ 𝑉 ) |
| 30 | 29 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 ) |
| 31 | 6 8 1 2 9 4 19 30 | imasmulf | ⊢ ( 𝜑 → ( .r ‘ 𝑈 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 32 | fovcdm | ⊢ ( ( ( .r ‘ 𝑈 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ∈ 𝐵 ) | |
| 33 | 31 32 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ∈ 𝐵 ) |
| 34 | forn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 35 | 6 34 | syl | ⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
| 36 | 35 | eleq2d | ⊢ ( 𝜑 → ( 𝑢 ∈ ran 𝐹 ↔ 𝑢 ∈ 𝐵 ) ) |
| 37 | 35 | eleq2d | ⊢ ( 𝜑 → ( 𝑣 ∈ ran 𝐹 ↔ 𝑣 ∈ 𝐵 ) ) |
| 38 | 35 | eleq2d | ⊢ ( 𝜑 → ( 𝑤 ∈ ran 𝐹 ↔ 𝑤 ∈ 𝐵 ) ) |
| 39 | 36 37 38 | 3anbi123d | ⊢ ( 𝜑 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 40 | fofn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 Fn 𝑉 ) | |
| 41 | 6 40 | syl | ⊢ ( 𝜑 → 𝐹 Fn 𝑉 ) |
| 42 | fvelrnb | ⊢ ( 𝐹 Fn 𝑉 → ( 𝑢 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) | |
| 43 | fvelrnb | ⊢ ( 𝐹 Fn 𝑉 → ( 𝑣 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ) ) | |
| 44 | fvelrnb | ⊢ ( 𝐹 Fn 𝑉 → ( 𝑤 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) | |
| 45 | 42 43 44 | 3anbi123d | ⊢ ( 𝐹 Fn 𝑉 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 46 | 41 45 | syl | ⊢ ( 𝜑 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 47 | 39 46 | bitr3d | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 48 | 3reeanv | ⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) | |
| 49 | 47 48 | bitr4di | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 50 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑅 ∈ Ring ) |
| 51 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) | |
| 52 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 53 | 51 52 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 54 | 53 | 3adant3r3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 55 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ 𝑉 ) | |
| 56 | 55 52 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 57 | 56 | 3adant3r3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 58 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ 𝑉 ) | |
| 59 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 60 | 58 59 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) |
| 61 | 26 4 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 62 | 50 54 57 60 61 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 63 | 62 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) |
| 64 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝜑 ) | |
| 65 | 29 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
| 66 | 65 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
| 67 | 6 8 1 2 9 4 19 | imasmulval | ⊢ ( ( 𝜑 ∧ ( 𝑥 · 𝑦 ) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) ) |
| 68 | 64 66 58 67 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) ) |
| 69 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑉 ) | |
| 70 | 29 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝑉 ) |
| 71 | 70 | 3adantr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝑉 ) |
| 72 | 6 8 1 2 9 4 19 | imasmulval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝑦 · 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) |
| 73 | 64 69 71 72 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) |
| 74 | 63 68 73 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
| 75 | 6 8 1 2 9 4 19 | imasmulval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) |
| 76 | 75 | 3adant3r3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) |
| 77 | 76 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 78 | 6 8 1 2 9 4 19 | imasmulval | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) |
| 79 | 78 | 3adant3r1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) |
| 80 | 79 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
| 81 | 74 77 80 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 82 | simp1 | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑥 ) = 𝑢 ) | |
| 83 | simp2 | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑦 ) = 𝑣 ) | |
| 84 | 82 83 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ) |
| 85 | simp3 | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = 𝑤 ) | |
| 86 | 84 85 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) ) |
| 87 | 83 85 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) |
| 88 | 82 87 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 89 | 86 88 | eqeq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 90 | 81 89 | syl5ibcom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 91 | 90 | 3exp2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑉 → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) |
| 92 | 91 | imp32 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) |
| 93 | 92 | rexlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 94 | 93 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 95 | 49 94 | sylbid | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 96 | 95 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 97 | 26 3 4 | ringdi | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 98 | 50 54 57 60 97 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 99 | 98 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) ) |
| 100 | 26 3 | ringacl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 + 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
| 101 | 20 23 25 100 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 + 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
| 102 | 101 22 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 + 𝑣 ) ∈ 𝑉 ) |
| 103 | 102 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑉 ) |
| 104 | 103 | 3adantr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑉 ) |
| 105 | 6 8 1 2 9 4 19 | imasmulval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝑦 + 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) ) |
| 106 | 64 69 104 105 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) ) |
| 107 | 29 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · 𝑧 ) ∈ 𝑉 ) |
| 108 | 107 | 3adantr2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · 𝑧 ) ∈ 𝑉 ) |
| 109 | eqid | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) | |
| 110 | 6 7 1 2 9 3 109 | imasaddval | ⊢ ( ( 𝜑 ∧ ( 𝑥 · 𝑦 ) ∈ 𝑉 ∧ ( 𝑥 · 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) ) |
| 111 | 64 66 108 110 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) ) |
| 112 | 99 106 111 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) ) |
| 113 | 6 7 1 2 9 3 109 | imasaddval | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) |
| 114 | 113 | 3adant3r1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) |
| 115 | 114 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) ) |
| 116 | 6 8 1 2 9 4 19 | imasmulval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) |
| 117 | 116 | 3adant3r2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) |
| 118 | 76 117 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) ) |
| 119 | 112 115 118 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 120 | 83 85 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) |
| 121 | 82 120 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) |
| 122 | 82 85 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) |
| 123 | 84 122 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 124 | 121 123 | eqeq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 125 | 119 124 | syl5ibcom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 126 | 125 | 3exp2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑉 → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) |
| 127 | 126 | imp32 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) |
| 128 | 127 | rexlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 129 | 128 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 130 | 49 129 | sylbid | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 131 | 130 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 132 | 26 3 4 | ringdir | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 133 | 50 54 57 60 132 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 134 | 133 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 135 | 102 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
| 136 | 135 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
| 137 | 6 8 1 2 9 4 19 | imasmulval | ⊢ ( ( 𝜑 ∧ ( 𝑥 + 𝑦 ) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) ) |
| 138 | 64 136 58 137 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) ) |
| 139 | 6 7 1 2 9 3 109 | imasaddval | ⊢ ( ( 𝜑 ∧ ( 𝑥 · 𝑧 ) ∈ 𝑉 ∧ ( 𝑦 · 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 140 | 64 108 71 139 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 141 | 134 138 140 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
| 142 | 6 7 1 2 9 3 109 | imasaddval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
| 143 | 142 | 3adant3r3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
| 144 | 143 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 145 | 117 79 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
| 146 | 141 144 145 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 147 | 82 83 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ) |
| 148 | 147 85 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) ) |
| 149 | 122 87 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 150 | 148 149 | eqeq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 151 | 146 150 | syl5ibcom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 152 | 151 | 3exp2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑉 → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) |
| 153 | 152 | imp32 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) |
| 154 | 153 | rexlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 155 | 154 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 156 | 49 155 | sylbid | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 157 | 156 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 158 | fof | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) | |
| 159 | 6 158 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 160 | 26 5 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 161 | 9 160 | syl | ⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 162 | 161 2 | eleqtrrd | ⊢ ( 𝜑 → 1 ∈ 𝑉 ) |
| 163 | 159 162 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ 𝐵 ) |
| 164 | 41 42 | syl | ⊢ ( 𝜑 → ( 𝑢 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) |
| 165 | 36 164 | bitr3d | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) |
| 166 | simpl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝜑 ) | |
| 167 | 162 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 1 ∈ 𝑉 ) |
| 168 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) | |
| 169 | 6 8 1 2 9 4 19 | imasmulval | ⊢ ( ( 𝜑 ∧ 1 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 1 · 𝑥 ) ) ) |
| 170 | 166 167 168 169 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 1 · 𝑥 ) ) ) |
| 171 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↔ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
| 172 | 171 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 173 | 26 4 5 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 1 · 𝑥 ) = 𝑥 ) |
| 174 | 9 172 173 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 1 · 𝑥 ) = 𝑥 ) |
| 175 | 174 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 1 · 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 176 | 170 175 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 177 | oveq2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) ) | |
| 178 | id | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( 𝐹 ‘ 𝑥 ) = 𝑢 ) | |
| 179 | 177 178 | eqeq12d | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 180 | 176 179 | syl5ibcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 181 | 180 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 182 | 165 181 | sylbid | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 183 | 182 | imp | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ) → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ) |
| 184 | 6 8 1 2 9 4 19 | imasmulval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ ( 𝑥 · 1 ) ) ) |
| 185 | 167 184 | mpd3an3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ ( 𝑥 · 1 ) ) ) |
| 186 | 26 4 5 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 · 1 ) = 𝑥 ) |
| 187 | 9 172 186 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 · 1 ) = 𝑥 ) |
| 188 | 187 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑥 · 1 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 189 | 185 188 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 190 | oveq1 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) ) | |
| 191 | 190 178 | eqeq12d | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) |
| 192 | 189 191 | syl5ibcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) |
| 193 | 192 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) |
| 194 | 165 193 | sylbid | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) |
| 195 | 194 | imp | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) |
| 196 | 10 11 12 18 33 96 131 157 163 183 195 | isringd | ⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 197 | 163 10 | eleqtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ( Base ‘ 𝑈 ) ) |
| 198 | 10 | eleq2d | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 ↔ 𝑢 ∈ ( Base ‘ 𝑈 ) ) ) |
| 199 | 182 194 | jcad | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 → ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) ) |
| 200 | 198 199 | sylbird | ⊢ ( 𝜑 → ( 𝑢 ∈ ( Base ‘ 𝑈 ) → ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) ) |
| 201 | 200 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑢 ∈ ( Base ‘ 𝑈 ) ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) |
| 202 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 203 | eqid | ⊢ ( 1r ‘ 𝑈 ) = ( 1r ‘ 𝑈 ) | |
| 204 | 202 19 203 | isringid | ⊢ ( 𝑈 ∈ Ring → ( ( ( 𝐹 ‘ 1 ) ∈ ( Base ‘ 𝑈 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑈 ) ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) ↔ ( 1r ‘ 𝑈 ) = ( 𝐹 ‘ 1 ) ) ) |
| 205 | 196 204 | syl | ⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 1 ) ∈ ( Base ‘ 𝑈 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑈 ) ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) ↔ ( 1r ‘ 𝑈 ) = ( 𝐹 ‘ 1 ) ) ) |
| 206 | 197 201 205 | mpbi2and | ⊢ ( 𝜑 → ( 1r ‘ 𝑈 ) = ( 𝐹 ‘ 1 ) ) |
| 207 | 206 | eqcomd | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 1r ‘ 𝑈 ) ) |
| 208 | 196 207 | jca | ⊢ ( 𝜑 → ( 𝑈 ∈ Ring ∧ ( 𝐹 ‘ 1 ) = ( 1r ‘ 𝑈 ) ) ) |