This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasgrp.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasgrp.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasgrp.p | |- ( ph -> .+ = ( +g ` R ) ) |
||
| imasgrp.f | |- ( ph -> F : V -onto-> B ) |
||
| imasgrp.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
||
| imasgrp.r | |- ( ph -> R e. Grp ) |
||
| imasgrp.z | |- .0. = ( 0g ` R ) |
||
| Assertion | imasgrp | |- ( ph -> ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasgrp.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasgrp.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasgrp.p | |- ( ph -> .+ = ( +g ` R ) ) |
|
| 4 | imasgrp.f | |- ( ph -> F : V -onto-> B ) |
|
| 5 | imasgrp.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
|
| 6 | imasgrp.r | |- ( ph -> R e. Grp ) |
|
| 7 | imasgrp.z | |- .0. = ( 0g ` R ) |
|
| 8 | 6 | 3ad2ant1 | |- ( ( ph /\ x e. V /\ y e. V ) -> R e. Grp ) |
| 9 | simp2 | |- ( ( ph /\ x e. V /\ y e. V ) -> x e. V ) |
|
| 10 | 2 | 3ad2ant1 | |- ( ( ph /\ x e. V /\ y e. V ) -> V = ( Base ` R ) ) |
| 11 | 9 10 | eleqtrd | |- ( ( ph /\ x e. V /\ y e. V ) -> x e. ( Base ` R ) ) |
| 12 | simp3 | |- ( ( ph /\ x e. V /\ y e. V ) -> y e. V ) |
|
| 13 | 12 10 | eleqtrd | |- ( ( ph /\ x e. V /\ y e. V ) -> y e. ( Base ` R ) ) |
| 14 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 15 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 16 | 14 15 | grpcl | |- ( ( R e. Grp /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
| 17 | 8 11 13 16 | syl3anc | |- ( ( ph /\ x e. V /\ y e. V ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
| 18 | 3 | 3ad2ant1 | |- ( ( ph /\ x e. V /\ y e. V ) -> .+ = ( +g ` R ) ) |
| 19 | 18 | oveqd | |- ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) = ( x ( +g ` R ) y ) ) |
| 20 | 17 19 10 | 3eltr4d | |- ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. V ) |
| 21 | 6 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> R e. Grp ) |
| 22 | 11 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. ( Base ` R ) ) |
| 23 | 13 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> y e. ( Base ` R ) ) |
| 24 | simpr3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. V ) |
|
| 25 | 2 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> V = ( Base ` R ) ) |
| 26 | 24 25 | eleqtrd | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. ( Base ` R ) ) |
| 27 | 14 15 | grpass | |- ( ( R e. Grp /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x ( +g ` R ) y ) ( +g ` R ) z ) = ( x ( +g ` R ) ( y ( +g ` R ) z ) ) ) |
| 28 | 21 22 23 26 27 | syl13anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x ( +g ` R ) y ) ( +g ` R ) z ) = ( x ( +g ` R ) ( y ( +g ` R ) z ) ) ) |
| 29 | 3 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> .+ = ( +g ` R ) ) |
| 30 | 19 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ y ) = ( x ( +g ` R ) y ) ) |
| 31 | eqidd | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z = z ) |
|
| 32 | 29 30 31 | oveq123d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .+ z ) = ( ( x ( +g ` R ) y ) ( +g ` R ) z ) ) |
| 33 | eqidd | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x = x ) |
|
| 34 | 29 | oveqd | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .+ z ) = ( y ( +g ` R ) z ) ) |
| 35 | 29 33 34 | oveq123d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ ( y .+ z ) ) = ( x ( +g ` R ) ( y ( +g ` R ) z ) ) ) |
| 36 | 28 32 35 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 37 | 36 | fveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .+ z ) ) = ( F ` ( x .+ ( y .+ z ) ) ) ) |
| 38 | 14 7 | grpidcl | |- ( R e. Grp -> .0. e. ( Base ` R ) ) |
| 39 | 6 38 | syl | |- ( ph -> .0. e. ( Base ` R ) ) |
| 40 | 39 2 | eleqtrrd | |- ( ph -> .0. e. V ) |
| 41 | 3 | adantr | |- ( ( ph /\ x e. V ) -> .+ = ( +g ` R ) ) |
| 42 | 41 | oveqd | |- ( ( ph /\ x e. V ) -> ( .0. .+ x ) = ( .0. ( +g ` R ) x ) ) |
| 43 | 2 | eleq2d | |- ( ph -> ( x e. V <-> x e. ( Base ` R ) ) ) |
| 44 | 43 | biimpa | |- ( ( ph /\ x e. V ) -> x e. ( Base ` R ) ) |
| 45 | 14 15 7 | grplid | |- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( .0. ( +g ` R ) x ) = x ) |
| 46 | 6 44 45 | syl2an2r | |- ( ( ph /\ x e. V ) -> ( .0. ( +g ` R ) x ) = x ) |
| 47 | 42 46 | eqtrd | |- ( ( ph /\ x e. V ) -> ( .0. .+ x ) = x ) |
| 48 | 47 | fveq2d | |- ( ( ph /\ x e. V ) -> ( F ` ( .0. .+ x ) ) = ( F ` x ) ) |
| 49 | eqid | |- ( invg ` R ) = ( invg ` R ) |
|
| 50 | 14 49 | grpinvcl | |- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( ( invg ` R ) ` x ) e. ( Base ` R ) ) |
| 51 | 6 44 50 | syl2an2r | |- ( ( ph /\ x e. V ) -> ( ( invg ` R ) ` x ) e. ( Base ` R ) ) |
| 52 | 2 | adantr | |- ( ( ph /\ x e. V ) -> V = ( Base ` R ) ) |
| 53 | 51 52 | eleqtrrd | |- ( ( ph /\ x e. V ) -> ( ( invg ` R ) ` x ) e. V ) |
| 54 | 41 | oveqd | |- ( ( ph /\ x e. V ) -> ( ( ( invg ` R ) ` x ) .+ x ) = ( ( ( invg ` R ) ` x ) ( +g ` R ) x ) ) |
| 55 | 14 15 7 49 | grplinv | |- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( ( ( invg ` R ) ` x ) ( +g ` R ) x ) = .0. ) |
| 56 | 6 44 55 | syl2an2r | |- ( ( ph /\ x e. V ) -> ( ( ( invg ` R ) ` x ) ( +g ` R ) x ) = .0. ) |
| 57 | 54 56 | eqtrd | |- ( ( ph /\ x e. V ) -> ( ( ( invg ` R ) ` x ) .+ x ) = .0. ) |
| 58 | 57 | fveq2d | |- ( ( ph /\ x e. V ) -> ( F ` ( ( ( invg ` R ) ` x ) .+ x ) ) = ( F ` .0. ) ) |
| 59 | 1 2 3 4 5 6 20 37 40 48 53 58 | imasgrp2 | |- ( ph -> ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) |