This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasgrp.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasgrp.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasgrp.p | |- ( ph -> .+ = ( +g ` R ) ) |
||
| imasgrp.f | |- ( ph -> F : V -onto-> B ) |
||
| imasgrp.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
||
| imasgrp2.r | |- ( ph -> R e. W ) |
||
| imasgrp2.1 | |- ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. V ) |
||
| imasgrp2.2 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .+ z ) ) = ( F ` ( x .+ ( y .+ z ) ) ) ) |
||
| imasgrp2.3 | |- ( ph -> .0. e. V ) |
||
| imasgrp2.4 | |- ( ( ph /\ x e. V ) -> ( F ` ( .0. .+ x ) ) = ( F ` x ) ) |
||
| imasgrp2.5 | |- ( ( ph /\ x e. V ) -> N e. V ) |
||
| imasgrp2.6 | |- ( ( ph /\ x e. V ) -> ( F ` ( N .+ x ) ) = ( F ` .0. ) ) |
||
| Assertion | imasgrp2 | |- ( ph -> ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasgrp.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasgrp.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasgrp.p | |- ( ph -> .+ = ( +g ` R ) ) |
|
| 4 | imasgrp.f | |- ( ph -> F : V -onto-> B ) |
|
| 5 | imasgrp.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
|
| 6 | imasgrp2.r | |- ( ph -> R e. W ) |
|
| 7 | imasgrp2.1 | |- ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. V ) |
|
| 8 | imasgrp2.2 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .+ z ) ) = ( F ` ( x .+ ( y .+ z ) ) ) ) |
|
| 9 | imasgrp2.3 | |- ( ph -> .0. e. V ) |
|
| 10 | imasgrp2.4 | |- ( ( ph /\ x e. V ) -> ( F ` ( .0. .+ x ) ) = ( F ` x ) ) |
|
| 11 | imasgrp2.5 | |- ( ( ph /\ x e. V ) -> N e. V ) |
|
| 12 | imasgrp2.6 | |- ( ( ph /\ x e. V ) -> ( F ` ( N .+ x ) ) = ( F ` .0. ) ) |
|
| 13 | 1 2 4 6 | imasbas | |- ( ph -> B = ( Base ` U ) ) |
| 14 | eqidd | |- ( ph -> ( +g ` U ) = ( +g ` U ) ) |
|
| 15 | 3 | oveqd | |- ( ph -> ( a .+ b ) = ( a ( +g ` R ) b ) ) |
| 16 | 15 | fveq2d | |- ( ph -> ( F ` ( a .+ b ) ) = ( F ` ( a ( +g ` R ) b ) ) ) |
| 17 | 3 | oveqd | |- ( ph -> ( p .+ q ) = ( p ( +g ` R ) q ) ) |
| 18 | 17 | fveq2d | |- ( ph -> ( F ` ( p .+ q ) ) = ( F ` ( p ( +g ` R ) q ) ) ) |
| 19 | 16 18 | eqeq12d | |- ( ph -> ( ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) <-> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) ) ) |
| 20 | 19 | 3ad2ant1 | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) <-> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) ) ) |
| 21 | 5 20 | sylibd | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) ) ) |
| 22 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 23 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 24 | 17 | adantr | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .+ q ) = ( p ( +g ` R ) q ) ) |
| 25 | 7 | 3expb | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. V ) |
| 26 | 25 | caovclg | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .+ q ) e. V ) |
| 27 | 24 26 | eqeltrrd | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p ( +g ` R ) q ) e. V ) |
| 28 | 4 21 1 2 6 22 23 27 | imasaddf | |- ( ph -> ( +g ` U ) : ( B X. B ) --> B ) |
| 29 | fovcdm | |- ( ( ( +g ` U ) : ( B X. B ) --> B /\ u e. B /\ v e. B ) -> ( u ( +g ` U ) v ) e. B ) |
|
| 30 | 28 29 | syl3an1 | |- ( ( ph /\ u e. B /\ v e. B ) -> ( u ( +g ` U ) v ) e. B ) |
| 31 | forn | |- ( F : V -onto-> B -> ran F = B ) |
|
| 32 | 4 31 | syl | |- ( ph -> ran F = B ) |
| 33 | 32 | eleq2d | |- ( ph -> ( u e. ran F <-> u e. B ) ) |
| 34 | 32 | eleq2d | |- ( ph -> ( v e. ran F <-> v e. B ) ) |
| 35 | 32 | eleq2d | |- ( ph -> ( w e. ran F <-> w e. B ) ) |
| 36 | 33 34 35 | 3anbi123d | |- ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( u e. B /\ v e. B /\ w e. B ) ) ) |
| 37 | fofn | |- ( F : V -onto-> B -> F Fn V ) |
|
| 38 | 4 37 | syl | |- ( ph -> F Fn V ) |
| 39 | fvelrnb | |- ( F Fn V -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) |
|
| 40 | fvelrnb | |- ( F Fn V -> ( v e. ran F <-> E. y e. V ( F ` y ) = v ) ) |
|
| 41 | fvelrnb | |- ( F Fn V -> ( w e. ran F <-> E. z e. V ( F ` z ) = w ) ) |
|
| 42 | 39 40 41 | 3anbi123d | |- ( F Fn V -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 43 | 38 42 | syl | |- ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 44 | 36 43 | bitr3d | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 45 | 3reeanv | |- ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) |
|
| 46 | 44 45 | bitr4di | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) ) ) |
| 47 | 3 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> .+ = ( +g ` R ) ) |
| 48 | 47 | oveqd | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .+ z ) = ( ( x .+ y ) ( +g ` R ) z ) ) |
| 49 | 48 | fveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .+ z ) ) = ( F ` ( ( x .+ y ) ( +g ` R ) z ) ) ) |
| 50 | 47 | oveqd | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ ( y .+ z ) ) = ( x ( +g ` R ) ( y .+ z ) ) ) |
| 51 | 50 | fveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( x .+ ( y .+ z ) ) ) = ( F ` ( x ( +g ` R ) ( y .+ z ) ) ) ) |
| 52 | 8 49 51 | 3eqtr3d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) ( +g ` R ) z ) ) = ( F ` ( x ( +g ` R ) ( y .+ z ) ) ) ) |
| 53 | simpl | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ph ) |
|
| 54 | 7 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ y ) e. V ) |
| 55 | simpr3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. V ) |
|
| 56 | 4 21 1 2 6 22 23 | imasaddval | |- ( ( ph /\ ( x .+ y ) e. V /\ z e. V ) -> ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) ( +g ` R ) z ) ) ) |
| 57 | 53 54 55 56 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) ( +g ` R ) z ) ) ) |
| 58 | simpr1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. V ) |
|
| 59 | 26 | caovclg | |- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) |
| 60 | 59 | 3adantr1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) |
| 61 | 4 21 1 2 6 22 23 | imasaddval | |- ( ( ph /\ x e. V /\ ( y .+ z ) e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x ( +g ` R ) ( y .+ z ) ) ) ) |
| 62 | 53 58 60 61 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x ( +g ` R ) ( y .+ z ) ) ) ) |
| 63 | 52 57 62 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) ) |
| 64 | 4 21 1 2 6 22 23 | imasaddval | |- ( ( ph /\ x e. V /\ y e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x ( +g ` R ) y ) ) ) |
| 65 | 64 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x ( +g ` R ) y ) ) ) |
| 66 | 47 | oveqd | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ y ) = ( x ( +g ` R ) y ) ) |
| 67 | 66 | fveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( x .+ y ) ) = ( F ` ( x ( +g ` R ) y ) ) ) |
| 68 | 65 67 | eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
| 69 | 68 | oveq1d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) ) |
| 70 | 4 21 1 2 6 22 23 | imasaddval | |- ( ( ph /\ y e. V /\ z e. V ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y ( +g ` R ) z ) ) ) |
| 71 | 70 | 3adant3r1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y ( +g ` R ) z ) ) ) |
| 72 | 47 | oveqd | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .+ z ) = ( y ( +g ` R ) z ) ) |
| 73 | 72 | fveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( y .+ z ) ) = ( F ` ( y ( +g ` R ) z ) ) ) |
| 74 | 71 73 | eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
| 75 | 74 | oveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) ) |
| 76 | 63 69 75 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) ) |
| 77 | simp1 | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` x ) = u ) |
|
| 78 | simp2 | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` y ) = v ) |
|
| 79 | 77 78 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( u ( +g ` U ) v ) ) |
| 80 | simp3 | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` z ) = w ) |
|
| 81 | 79 80 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( u ( +g ` U ) v ) ( +g ` U ) w ) ) |
| 82 | 78 80 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( v ( +g ` U ) w ) ) |
| 83 | 77 82 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) |
| 84 | 81 83 | eqeq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) <-> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) |
| 85 | 76 84 | syl5ibcom | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) |
| 86 | 85 | 3exp2 | |- ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) ) ) ) |
| 87 | 86 | imp32 | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) ) |
| 88 | 87 | rexlimdv | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) |
| 89 | 88 | rexlimdvva | |- ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) |
| 90 | 46 89 | sylbid | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) |
| 91 | 90 | imp | |- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) |
| 92 | fof | |- ( F : V -onto-> B -> F : V --> B ) |
|
| 93 | 4 92 | syl | |- ( ph -> F : V --> B ) |
| 94 | 93 9 | ffvelcdmd | |- ( ph -> ( F ` .0. ) e. B ) |
| 95 | 38 39 | syl | |- ( ph -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) |
| 96 | 33 95 | bitr3d | |- ( ph -> ( u e. B <-> E. x e. V ( F ` x ) = u ) ) |
| 97 | simpl | |- ( ( ph /\ x e. V ) -> ph ) |
|
| 98 | 9 | adantr | |- ( ( ph /\ x e. V ) -> .0. e. V ) |
| 99 | simpr | |- ( ( ph /\ x e. V ) -> x e. V ) |
|
| 100 | 4 21 1 2 6 22 23 | imasaddval | |- ( ( ph /\ .0. e. V /\ x e. V ) -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` ( .0. ( +g ` R ) x ) ) ) |
| 101 | 97 98 99 100 | syl3anc | |- ( ( ph /\ x e. V ) -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` ( .0. ( +g ` R ) x ) ) ) |
| 102 | 3 | adantr | |- ( ( ph /\ x e. V ) -> .+ = ( +g ` R ) ) |
| 103 | 102 | oveqd | |- ( ( ph /\ x e. V ) -> ( .0. .+ x ) = ( .0. ( +g ` R ) x ) ) |
| 104 | 103 | fveq2d | |- ( ( ph /\ x e. V ) -> ( F ` ( .0. .+ x ) ) = ( F ` ( .0. ( +g ` R ) x ) ) ) |
| 105 | 101 104 10 | 3eqtr2d | |- ( ( ph /\ x e. V ) -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` x ) ) |
| 106 | oveq2 | |- ( ( F ` x ) = u -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( ( F ` .0. ) ( +g ` U ) u ) ) |
|
| 107 | id | |- ( ( F ` x ) = u -> ( F ` x ) = u ) |
|
| 108 | 106 107 | eqeq12d | |- ( ( F ` x ) = u -> ( ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` x ) <-> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) |
| 109 | 105 108 | syl5ibcom | |- ( ( ph /\ x e. V ) -> ( ( F ` x ) = u -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) |
| 110 | 109 | rexlimdva | |- ( ph -> ( E. x e. V ( F ` x ) = u -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) |
| 111 | 96 110 | sylbid | |- ( ph -> ( u e. B -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) |
| 112 | 111 | imp | |- ( ( ph /\ u e. B ) -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) |
| 113 | 93 | adantr | |- ( ( ph /\ x e. V ) -> F : V --> B ) |
| 114 | 113 11 | ffvelcdmd | |- ( ( ph /\ x e. V ) -> ( F ` N ) e. B ) |
| 115 | 4 21 1 2 6 22 23 | imasaddval | |- ( ( ph /\ N e. V /\ x e. V ) -> ( ( F ` N ) ( +g ` U ) ( F ` x ) ) = ( F ` ( N ( +g ` R ) x ) ) ) |
| 116 | 97 11 99 115 | syl3anc | |- ( ( ph /\ x e. V ) -> ( ( F ` N ) ( +g ` U ) ( F ` x ) ) = ( F ` ( N ( +g ` R ) x ) ) ) |
| 117 | 102 | oveqd | |- ( ( ph /\ x e. V ) -> ( N .+ x ) = ( N ( +g ` R ) x ) ) |
| 118 | 117 | fveq2d | |- ( ( ph /\ x e. V ) -> ( F ` ( N .+ x ) ) = ( F ` ( N ( +g ` R ) x ) ) ) |
| 119 | 116 118 12 | 3eqtr2d | |- ( ( ph /\ x e. V ) -> ( ( F ` N ) ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) ) |
| 120 | oveq1 | |- ( v = ( F ` N ) -> ( v ( +g ` U ) ( F ` x ) ) = ( ( F ` N ) ( +g ` U ) ( F ` x ) ) ) |
|
| 121 | 120 | eqeq1d | |- ( v = ( F ` N ) -> ( ( v ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) <-> ( ( F ` N ) ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) ) ) |
| 122 | 121 | rspcev | |- ( ( ( F ` N ) e. B /\ ( ( F ` N ) ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) ) -> E. v e. B ( v ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) ) |
| 123 | 114 119 122 | syl2anc | |- ( ( ph /\ x e. V ) -> E. v e. B ( v ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) ) |
| 124 | oveq2 | |- ( ( F ` x ) = u -> ( v ( +g ` U ) ( F ` x ) ) = ( v ( +g ` U ) u ) ) |
|
| 125 | 124 | eqeq1d | |- ( ( F ` x ) = u -> ( ( v ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) <-> ( v ( +g ` U ) u ) = ( F ` .0. ) ) ) |
| 126 | 125 | rexbidv | |- ( ( F ` x ) = u -> ( E. v e. B ( v ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) <-> E. v e. B ( v ( +g ` U ) u ) = ( F ` .0. ) ) ) |
| 127 | 123 126 | syl5ibcom | |- ( ( ph /\ x e. V ) -> ( ( F ` x ) = u -> E. v e. B ( v ( +g ` U ) u ) = ( F ` .0. ) ) ) |
| 128 | 127 | rexlimdva | |- ( ph -> ( E. x e. V ( F ` x ) = u -> E. v e. B ( v ( +g ` U ) u ) = ( F ` .0. ) ) ) |
| 129 | 96 128 | sylbid | |- ( ph -> ( u e. B -> E. v e. B ( v ( +g ` U ) u ) = ( F ` .0. ) ) ) |
| 130 | 129 | imp | |- ( ( ph /\ u e. B ) -> E. v e. B ( v ( +g ` U ) u ) = ( F ` .0. ) ) |
| 131 | 13 14 30 91 94 112 130 | isgrpde | |- ( ph -> U e. Grp ) |
| 132 | 13 14 94 112 131 | grpidd2 | |- ( ph -> ( F ` .0. ) = ( 0g ` U ) ) |
| 133 | 131 132 | jca | |- ( ph -> ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) |