This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasgrp.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasgrp.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasgrp.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) | ||
| imasgrp.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imasgrp.e | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) | ||
| imasgrp2.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | ||
| imasgrp2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) | ||
| imasgrp2.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) | ||
| imasgrp2.3 | ⊢ ( 𝜑 → 0 ∈ 𝑉 ) | ||
| imasgrp2.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 0 + 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) | ||
| imasgrp2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑁 ∈ 𝑉 ) | ||
| imasgrp2.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑁 + 𝑥 ) ) = ( 𝐹 ‘ 0 ) ) | ||
| Assertion | imasgrp2 | ⊢ ( 𝜑 → ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasgrp.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasgrp.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasgrp.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) | |
| 4 | imasgrp.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 5 | imasgrp.e | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) | |
| 6 | imasgrp2.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | |
| 7 | imasgrp2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) | |
| 8 | imasgrp2.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) | |
| 9 | imasgrp2.3 | ⊢ ( 𝜑 → 0 ∈ 𝑉 ) | |
| 10 | imasgrp2.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 0 + 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 11 | imasgrp2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑁 ∈ 𝑉 ) | |
| 12 | imasgrp2.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑁 + 𝑥 ) ) = ( 𝐹 ‘ 0 ) ) | |
| 13 | 1 2 4 6 | imasbas | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑈 ) ) |
| 14 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) ) | |
| 15 | 3 | oveqd | ⊢ ( 𝜑 → ( 𝑎 + 𝑏 ) = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) |
| 16 | 15 | fveq2d | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) |
| 17 | 3 | oveqd | ⊢ ( 𝜑 → ( 𝑝 + 𝑞 ) = ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) |
| 18 | 17 | fveq2d | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ) |
| 19 | 16 18 | eqeq12d | ⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ↔ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ) ) |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ↔ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ) ) |
| 21 | 5 20 | sylibd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ) ) |
| 22 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 23 | eqid | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) | |
| 24 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 + 𝑞 ) = ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) |
| 25 | 7 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
| 26 | 25 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 + 𝑞 ) ∈ 𝑉 ) |
| 27 | 24 26 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ∈ 𝑉 ) |
| 28 | 4 21 1 2 6 22 23 27 | imasaddf | ⊢ ( 𝜑 → ( +g ‘ 𝑈 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 29 | fovcdm | ⊢ ( ( ( +g ‘ 𝑈 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ∈ 𝐵 ) | |
| 30 | 28 29 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ∈ 𝐵 ) |
| 31 | forn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 32 | 4 31 | syl | ⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
| 33 | 32 | eleq2d | ⊢ ( 𝜑 → ( 𝑢 ∈ ran 𝐹 ↔ 𝑢 ∈ 𝐵 ) ) |
| 34 | 32 | eleq2d | ⊢ ( 𝜑 → ( 𝑣 ∈ ran 𝐹 ↔ 𝑣 ∈ 𝐵 ) ) |
| 35 | 32 | eleq2d | ⊢ ( 𝜑 → ( 𝑤 ∈ ran 𝐹 ↔ 𝑤 ∈ 𝐵 ) ) |
| 36 | 33 34 35 | 3anbi123d | ⊢ ( 𝜑 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 37 | fofn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 Fn 𝑉 ) | |
| 38 | 4 37 | syl | ⊢ ( 𝜑 → 𝐹 Fn 𝑉 ) |
| 39 | fvelrnb | ⊢ ( 𝐹 Fn 𝑉 → ( 𝑢 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) | |
| 40 | fvelrnb | ⊢ ( 𝐹 Fn 𝑉 → ( 𝑣 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ) ) | |
| 41 | fvelrnb | ⊢ ( 𝐹 Fn 𝑉 → ( 𝑤 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) | |
| 42 | 39 40 41 | 3anbi123d | ⊢ ( 𝐹 Fn 𝑉 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 43 | 38 42 | syl | ⊢ ( 𝜑 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 44 | 36 43 | bitr3d | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 45 | 3reeanv | ⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) | |
| 46 | 44 45 | bitr4di | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 47 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → + = ( +g ‘ 𝑅 ) ) |
| 48 | 47 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( ( 𝑥 + 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ) |
| 49 | 48 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
| 50 | 47 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 + ( 𝑦 + 𝑧 ) ) = ( 𝑥 ( +g ‘ 𝑅 ) ( 𝑦 + 𝑧 ) ) ) |
| 51 | 50 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) ( 𝑦 + 𝑧 ) ) ) ) |
| 52 | 8 49 51 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) ( 𝑦 + 𝑧 ) ) ) ) |
| 53 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝜑 ) | |
| 54 | 7 | 3adant3r3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
| 55 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ 𝑉 ) | |
| 56 | 4 21 1 2 6 22 23 | imasaddval | ⊢ ( ( 𝜑 ∧ ( 𝑥 + 𝑦 ) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
| 57 | 53 54 55 56 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
| 58 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑉 ) | |
| 59 | 26 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑉 ) |
| 60 | 59 | 3adantr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑉 ) |
| 61 | 4 21 1 2 6 22 23 | imasaddval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝑦 + 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) ( 𝑦 + 𝑧 ) ) ) ) |
| 62 | 53 58 60 61 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) ( 𝑦 + 𝑧 ) ) ) ) |
| 63 | 52 57 62 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) ) |
| 64 | 4 21 1 2 6 22 23 | imasaddval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
| 65 | 64 | 3adant3r3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
| 66 | 47 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 67 | 66 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
| 68 | 65 67 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
| 69 | 68 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 70 | 4 21 1 2 6 22 23 | imasaddval | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
| 71 | 70 | 3adant3r1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
| 72 | 47 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 + 𝑧 ) = ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) |
| 73 | 72 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
| 74 | 71 73 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) |
| 75 | 74 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) ) |
| 76 | 63 69 75 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 77 | simp1 | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑥 ) = 𝑢 ) | |
| 78 | simp2 | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑦 ) = 𝑣 ) | |
| 79 | 77 78 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ) |
| 80 | simp3 | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = 𝑤 ) | |
| 81 | 79 80 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) ) |
| 82 | 78 80 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) |
| 83 | 77 82 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) |
| 84 | 81 83 | eqeq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 85 | 76 84 | syl5ibcom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 86 | 85 | 3exp2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑉 → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) |
| 87 | 86 | imp32 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) ) |
| 88 | 87 | rexlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 89 | 88 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 90 | 46 89 | sylbid | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 91 | 90 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) |
| 92 | fof | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) | |
| 93 | 4 92 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 94 | 93 9 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ 𝐵 ) |
| 95 | 38 39 | syl | ⊢ ( 𝜑 → ( 𝑢 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) |
| 96 | 33 95 | bitr3d | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) |
| 97 | simpl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝜑 ) | |
| 98 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ∈ 𝑉 ) |
| 99 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) | |
| 100 | 4 21 1 2 6 22 23 | imasaddval | ⊢ ( ( 𝜑 ∧ 0 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 0 ( +g ‘ 𝑅 ) 𝑥 ) ) ) |
| 101 | 97 98 99 100 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 0 ( +g ‘ 𝑅 ) 𝑥 ) ) ) |
| 102 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → + = ( +g ‘ 𝑅 ) ) |
| 103 | 102 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 0 + 𝑥 ) = ( 0 ( +g ‘ 𝑅 ) 𝑥 ) ) |
| 104 | 103 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 0 + 𝑥 ) ) = ( 𝐹 ‘ ( 0 ( +g ‘ 𝑅 ) 𝑥 ) ) ) |
| 105 | 101 104 10 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 106 | oveq2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) 𝑢 ) ) | |
| 107 | id | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( 𝐹 ‘ 𝑥 ) = 𝑢 ) | |
| 108 | 106 107 | eqeq12d | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 109 | 105 108 | syl5ibcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 110 | 109 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 111 | 96 110 | sylbid | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 112 | 111 | imp | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ) → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) 𝑢 ) = 𝑢 ) |
| 113 | 93 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 114 | 113 11 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑁 ) ∈ 𝐵 ) |
| 115 | 4 21 1 2 6 22 23 | imasaddval | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑁 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝑁 ( +g ‘ 𝑅 ) 𝑥 ) ) ) |
| 116 | 97 11 99 115 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑁 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝑁 ( +g ‘ 𝑅 ) 𝑥 ) ) ) |
| 117 | 102 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑁 + 𝑥 ) = ( 𝑁 ( +g ‘ 𝑅 ) 𝑥 ) ) |
| 118 | 117 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑁 + 𝑥 ) ) = ( 𝐹 ‘ ( 𝑁 ( +g ‘ 𝑅 ) 𝑥 ) ) ) |
| 119 | 116 118 12 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑁 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 0 ) ) |
| 120 | oveq1 | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝑁 ) → ( 𝑣 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑁 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) ) | |
| 121 | 120 | eqeq1d | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝑁 ) → ( ( 𝑣 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 0 ) ↔ ( ( 𝐹 ‘ 𝑁 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 0 ) ) ) |
| 122 | 121 | rspcev | ⊢ ( ( ( 𝐹 ‘ 𝑁 ) ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑁 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 0 ) ) → ∃ 𝑣 ∈ 𝐵 ( 𝑣 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 0 ) ) |
| 123 | 114 119 122 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ∃ 𝑣 ∈ 𝐵 ( 𝑣 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 0 ) ) |
| 124 | oveq2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( 𝑣 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝑣 ( +g ‘ 𝑈 ) 𝑢 ) ) | |
| 125 | 124 | eqeq1d | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝑣 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 0 ) ↔ ( 𝑣 ( +g ‘ 𝑈 ) 𝑢 ) = ( 𝐹 ‘ 0 ) ) ) |
| 126 | 125 | rexbidv | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ∃ 𝑣 ∈ 𝐵 ( 𝑣 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 0 ) ↔ ∃ 𝑣 ∈ 𝐵 ( 𝑣 ( +g ‘ 𝑈 ) 𝑢 ) = ( 𝐹 ‘ 0 ) ) ) |
| 127 | 123 126 | syl5ibcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ∃ 𝑣 ∈ 𝐵 ( 𝑣 ( +g ‘ 𝑈 ) 𝑢 ) = ( 𝐹 ‘ 0 ) ) ) |
| 128 | 127 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 → ∃ 𝑣 ∈ 𝐵 ( 𝑣 ( +g ‘ 𝑈 ) 𝑢 ) = ( 𝐹 ‘ 0 ) ) ) |
| 129 | 96 128 | sylbid | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 → ∃ 𝑣 ∈ 𝐵 ( 𝑣 ( +g ‘ 𝑈 ) 𝑢 ) = ( 𝐹 ‘ 0 ) ) ) |
| 130 | 129 | imp | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ) → ∃ 𝑣 ∈ 𝐵 ( 𝑣 ( +g ‘ 𝑈 ) 𝑢 ) = ( 𝐹 ‘ 0 ) ) |
| 131 | 13 14 30 91 94 112 130 | isgrpde | ⊢ ( 𝜑 → 𝑈 ∈ Grp ) |
| 132 | 13 14 94 112 131 | grpidd2 | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) |
| 133 | 131 132 | jca | ⊢ ( 𝜑 → ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |