This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd . (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpidd2.b | |- ( ph -> B = ( Base ` G ) ) |
|
| grpidd2.p | |- ( ph -> .+ = ( +g ` G ) ) |
||
| grpidd2.z | |- ( ph -> .0. e. B ) |
||
| grpidd2.i | |- ( ( ph /\ x e. B ) -> ( .0. .+ x ) = x ) |
||
| grpidd2.j | |- ( ph -> G e. Grp ) |
||
| Assertion | grpidd2 | |- ( ph -> .0. = ( 0g ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidd2.b | |- ( ph -> B = ( Base ` G ) ) |
|
| 2 | grpidd2.p | |- ( ph -> .+ = ( +g ` G ) ) |
|
| 3 | grpidd2.z | |- ( ph -> .0. e. B ) |
|
| 4 | grpidd2.i | |- ( ( ph /\ x e. B ) -> ( .0. .+ x ) = x ) |
|
| 5 | grpidd2.j | |- ( ph -> G e. Grp ) |
|
| 6 | 2 | oveqd | |- ( ph -> ( .0. .+ .0. ) = ( .0. ( +g ` G ) .0. ) ) |
| 7 | oveq2 | |- ( x = .0. -> ( .0. .+ x ) = ( .0. .+ .0. ) ) |
|
| 8 | id | |- ( x = .0. -> x = .0. ) |
|
| 9 | 7 8 | eqeq12d | |- ( x = .0. -> ( ( .0. .+ x ) = x <-> ( .0. .+ .0. ) = .0. ) ) |
| 10 | 4 | ralrimiva | |- ( ph -> A. x e. B ( .0. .+ x ) = x ) |
| 11 | 9 10 3 | rspcdva | |- ( ph -> ( .0. .+ .0. ) = .0. ) |
| 12 | 6 11 | eqtr3d | |- ( ph -> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 13 | 3 1 | eleqtrd | |- ( ph -> .0. e. ( Base ` G ) ) |
| 14 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 15 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 16 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 17 | 14 15 16 | grpid | |- ( ( G e. Grp /\ .0. e. ( Base ` G ) ) -> ( ( .0. ( +g ` G ) .0. ) = .0. <-> ( 0g ` G ) = .0. ) ) |
| 18 | 5 13 17 | syl2anc | |- ( ph -> ( ( .0. ( +g ` G ) .0. ) = .0. <-> ( 0g ` G ) = .0. ) ) |
| 19 | 12 18 | mpbid | |- ( ph -> ( 0g ` G ) = .0. ) |
| 20 | 19 | eqcomd | |- ( ph -> .0. = ( 0g ` G ) ) |