This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasaddf.f | |- ( ph -> F : V -onto-> B ) |
|
| imasaddf.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
||
| imasaddflem.a | |- ( ph -> .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
||
| Assertion | imasaddfnlem | |- ( ph -> .xb Fn ( B X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasaddf.f | |- ( ph -> F : V -onto-> B ) |
|
| 2 | imasaddf.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
|
| 3 | imasaddflem.a | |- ( ph -> .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
|
| 4 | opex | |- <. ( F ` p ) , ( F ` q ) >. e. _V |
|
| 5 | fvex | |- ( F ` ( p .x. q ) ) e. _V |
|
| 6 | 4 5 | relsnop | |- Rel { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } |
| 7 | 6 | rgenw | |- A. q e. V Rel { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } |
| 8 | reliun | |- ( Rel U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } <-> A. q e. V Rel { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
|
| 9 | 7 8 | mpbir | |- Rel U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } |
| 10 | 9 | rgenw | |- A. p e. V Rel U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } |
| 11 | reliun | |- ( Rel U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } <-> A. p e. V Rel U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
|
| 12 | 10 11 | mpbir | |- Rel U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } |
| 13 | 3 | releqd | |- ( ph -> ( Rel .xb <-> Rel U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) ) |
| 14 | 12 13 | mpbiri | |- ( ph -> Rel .xb ) |
| 15 | fof | |- ( F : V -onto-> B -> F : V --> B ) |
|
| 16 | 1 15 | syl | |- ( ph -> F : V --> B ) |
| 17 | ffvelcdm | |- ( ( F : V --> B /\ p e. V ) -> ( F ` p ) e. B ) |
|
| 18 | ffvelcdm | |- ( ( F : V --> B /\ q e. V ) -> ( F ` q ) e. B ) |
|
| 19 | 17 18 | anim12dan | |- ( ( F : V --> B /\ ( p e. V /\ q e. V ) ) -> ( ( F ` p ) e. B /\ ( F ` q ) e. B ) ) |
| 20 | 16 19 | sylan | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( ( F ` p ) e. B /\ ( F ` q ) e. B ) ) |
| 21 | opelxpi | |- ( ( ( F ` p ) e. B /\ ( F ` q ) e. B ) -> <. ( F ` p ) , ( F ` q ) >. e. ( B X. B ) ) |
|
| 22 | 20 21 | syl | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> <. ( F ` p ) , ( F ` q ) >. e. ( B X. B ) ) |
| 23 | opelxpi | |- ( ( <. ( F ` p ) , ( F ` q ) >. e. ( B X. B ) /\ ( F ` ( p .x. q ) ) e. _V ) -> <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. e. ( ( B X. B ) X. _V ) ) |
|
| 24 | 22 5 23 | sylancl | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. e. ( ( B X. B ) X. _V ) ) |
| 25 | 24 | snssd | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ ( ( B X. B ) X. _V ) ) |
| 26 | 25 | anassrs | |- ( ( ( ph /\ p e. V ) /\ q e. V ) -> { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ ( ( B X. B ) X. _V ) ) |
| 27 | 26 | iunssd | |- ( ( ph /\ p e. V ) -> U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ ( ( B X. B ) X. _V ) ) |
| 28 | 27 | iunssd | |- ( ph -> U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ ( ( B X. B ) X. _V ) ) |
| 29 | 3 28 | eqsstrd | |- ( ph -> .xb C_ ( ( B X. B ) X. _V ) ) |
| 30 | dmss | |- ( .xb C_ ( ( B X. B ) X. _V ) -> dom .xb C_ dom ( ( B X. B ) X. _V ) ) |
|
| 31 | 29 30 | syl | |- ( ph -> dom .xb C_ dom ( ( B X. B ) X. _V ) ) |
| 32 | vn0 | |- _V =/= (/) |
|
| 33 | dmxp | |- ( _V =/= (/) -> dom ( ( B X. B ) X. _V ) = ( B X. B ) ) |
|
| 34 | 32 33 | ax-mp | |- dom ( ( B X. B ) X. _V ) = ( B X. B ) |
| 35 | 31 34 | sseqtrdi | |- ( ph -> dom .xb C_ ( B X. B ) ) |
| 36 | forn | |- ( F : V -onto-> B -> ran F = B ) |
|
| 37 | 1 36 | syl | |- ( ph -> ran F = B ) |
| 38 | 37 | sqxpeqd | |- ( ph -> ( ran F X. ran F ) = ( B X. B ) ) |
| 39 | 35 38 | sseqtrrd | |- ( ph -> dom .xb C_ ( ran F X. ran F ) ) |
| 40 | 3 | eleq2d | |- ( ph -> ( <. <. ( F ` a ) , ( F ` b ) >. , w >. e. .xb <-> <. <. ( F ` a ) , ( F ` b ) >. , w >. e. U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) ) |
| 41 | 40 | adantr | |- ( ( ph /\ ( a e. V /\ b e. V ) ) -> ( <. <. ( F ` a ) , ( F ` b ) >. , w >. e. .xb <-> <. <. ( F ` a ) , ( F ` b ) >. , w >. e. U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) ) |
| 42 | df-br | |- ( <. ( F ` a ) , ( F ` b ) >. .xb w <-> <. <. ( F ` a ) , ( F ` b ) >. , w >. e. .xb ) |
|
| 43 | eliun | |- ( <. <. ( F ` a ) , ( F ` b ) >. , w >. e. U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } <-> E. p e. V <. <. ( F ` a ) , ( F ` b ) >. , w >. e. U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
|
| 44 | eliun | |- ( <. <. ( F ` a ) , ( F ` b ) >. , w >. e. U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } <-> E. q e. V <. <. ( F ` a ) , ( F ` b ) >. , w >. e. { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
|
| 45 | 44 | rexbii | |- ( E. p e. V <. <. ( F ` a ) , ( F ` b ) >. , w >. e. U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } <-> E. p e. V E. q e. V <. <. ( F ` a ) , ( F ` b ) >. , w >. e. { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
| 46 | 43 45 | bitr2i | |- ( E. p e. V E. q e. V <. <. ( F ` a ) , ( F ` b ) >. , w >. e. { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } <-> <. <. ( F ` a ) , ( F ` b ) >. , w >. e. U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
| 47 | 41 42 46 | 3bitr4g | |- ( ( ph /\ ( a e. V /\ b e. V ) ) -> ( <. ( F ` a ) , ( F ` b ) >. .xb w <-> E. p e. V E. q e. V <. <. ( F ` a ) , ( F ` b ) >. , w >. e. { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) ) |
| 48 | opex | |- <. <. ( F ` a ) , ( F ` b ) >. , w >. e. _V |
|
| 49 | 48 | elsn | |- ( <. <. ( F ` a ) , ( F ` b ) >. , w >. e. { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } <-> <. <. ( F ` a ) , ( F ` b ) >. , w >. = <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. ) |
| 50 | opex | |- <. ( F ` a ) , ( F ` b ) >. e. _V |
|
| 51 | vex | |- w e. _V |
|
| 52 | 50 51 | opth | |- ( <. <. ( F ` a ) , ( F ` b ) >. , w >. = <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. <-> ( <. ( F ` a ) , ( F ` b ) >. = <. ( F ` p ) , ( F ` q ) >. /\ w = ( F ` ( p .x. q ) ) ) ) |
| 53 | fvex | |- ( F ` a ) e. _V |
|
| 54 | fvex | |- ( F ` b ) e. _V |
|
| 55 | 53 54 | opth | |- ( <. ( F ` a ) , ( F ` b ) >. = <. ( F ` p ) , ( F ` q ) >. <-> ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) ) |
| 56 | 55 2 | biimtrid | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( <. ( F ` a ) , ( F ` b ) >. = <. ( F ` p ) , ( F ` q ) >. -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
| 57 | eqeq2 | |- ( ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) -> ( w = ( F ` ( a .x. b ) ) <-> w = ( F ` ( p .x. q ) ) ) ) |
|
| 58 | 57 | biimprd | |- ( ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) -> ( w = ( F ` ( p .x. q ) ) -> w = ( F ` ( a .x. b ) ) ) ) |
| 59 | 56 58 | syl6 | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( <. ( F ` a ) , ( F ` b ) >. = <. ( F ` p ) , ( F ` q ) >. -> ( w = ( F ` ( p .x. q ) ) -> w = ( F ` ( a .x. b ) ) ) ) ) |
| 60 | 59 | impd | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( <. ( F ` a ) , ( F ` b ) >. = <. ( F ` p ) , ( F ` q ) >. /\ w = ( F ` ( p .x. q ) ) ) -> w = ( F ` ( a .x. b ) ) ) ) |
| 61 | 52 60 | biimtrid | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( <. <. ( F ` a ) , ( F ` b ) >. , w >. = <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. -> w = ( F ` ( a .x. b ) ) ) ) |
| 62 | 49 61 | biimtrid | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( <. <. ( F ` a ) , ( F ` b ) >. , w >. e. { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } -> w = ( F ` ( a .x. b ) ) ) ) |
| 63 | 62 | 3expa | |- ( ( ( ph /\ ( a e. V /\ b e. V ) ) /\ ( p e. V /\ q e. V ) ) -> ( <. <. ( F ` a ) , ( F ` b ) >. , w >. e. { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } -> w = ( F ` ( a .x. b ) ) ) ) |
| 64 | 63 | rexlimdvva | |- ( ( ph /\ ( a e. V /\ b e. V ) ) -> ( E. p e. V E. q e. V <. <. ( F ` a ) , ( F ` b ) >. , w >. e. { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } -> w = ( F ` ( a .x. b ) ) ) ) |
| 65 | 47 64 | sylbid | |- ( ( ph /\ ( a e. V /\ b e. V ) ) -> ( <. ( F ` a ) , ( F ` b ) >. .xb w -> w = ( F ` ( a .x. b ) ) ) ) |
| 66 | 65 | alrimiv | |- ( ( ph /\ ( a e. V /\ b e. V ) ) -> A. w ( <. ( F ` a ) , ( F ` b ) >. .xb w -> w = ( F ` ( a .x. b ) ) ) ) |
| 67 | mo2icl | |- ( A. w ( <. ( F ` a ) , ( F ` b ) >. .xb w -> w = ( F ` ( a .x. b ) ) ) -> E* w <. ( F ` a ) , ( F ` b ) >. .xb w ) |
|
| 68 | 66 67 | syl | |- ( ( ph /\ ( a e. V /\ b e. V ) ) -> E* w <. ( F ` a ) , ( F ` b ) >. .xb w ) |
| 69 | 68 | ralrimivva | |- ( ph -> A. a e. V A. b e. V E* w <. ( F ` a ) , ( F ` b ) >. .xb w ) |
| 70 | fofn | |- ( F : V -onto-> B -> F Fn V ) |
|
| 71 | 1 70 | syl | |- ( ph -> F Fn V ) |
| 72 | opeq2 | |- ( z = ( F ` b ) -> <. ( F ` a ) , z >. = <. ( F ` a ) , ( F ` b ) >. ) |
|
| 73 | 72 | breq1d | |- ( z = ( F ` b ) -> ( <. ( F ` a ) , z >. .xb w <-> <. ( F ` a ) , ( F ` b ) >. .xb w ) ) |
| 74 | 73 | mobidv | |- ( z = ( F ` b ) -> ( E* w <. ( F ` a ) , z >. .xb w <-> E* w <. ( F ` a ) , ( F ` b ) >. .xb w ) ) |
| 75 | 74 | ralrn | |- ( F Fn V -> ( A. z e. ran F E* w <. ( F ` a ) , z >. .xb w <-> A. b e. V E* w <. ( F ` a ) , ( F ` b ) >. .xb w ) ) |
| 76 | 71 75 | syl | |- ( ph -> ( A. z e. ran F E* w <. ( F ` a ) , z >. .xb w <-> A. b e. V E* w <. ( F ` a ) , ( F ` b ) >. .xb w ) ) |
| 77 | 76 | ralbidv | |- ( ph -> ( A. a e. V A. z e. ran F E* w <. ( F ` a ) , z >. .xb w <-> A. a e. V A. b e. V E* w <. ( F ` a ) , ( F ` b ) >. .xb w ) ) |
| 78 | 69 77 | mpbird | |- ( ph -> A. a e. V A. z e. ran F E* w <. ( F ` a ) , z >. .xb w ) |
| 79 | opeq1 | |- ( y = ( F ` a ) -> <. y , z >. = <. ( F ` a ) , z >. ) |
|
| 80 | 79 | breq1d | |- ( y = ( F ` a ) -> ( <. y , z >. .xb w <-> <. ( F ` a ) , z >. .xb w ) ) |
| 81 | 80 | mobidv | |- ( y = ( F ` a ) -> ( E* w <. y , z >. .xb w <-> E* w <. ( F ` a ) , z >. .xb w ) ) |
| 82 | 81 | ralbidv | |- ( y = ( F ` a ) -> ( A. z e. ran F E* w <. y , z >. .xb w <-> A. z e. ran F E* w <. ( F ` a ) , z >. .xb w ) ) |
| 83 | 82 | ralrn | |- ( F Fn V -> ( A. y e. ran F A. z e. ran F E* w <. y , z >. .xb w <-> A. a e. V A. z e. ran F E* w <. ( F ` a ) , z >. .xb w ) ) |
| 84 | 71 83 | syl | |- ( ph -> ( A. y e. ran F A. z e. ran F E* w <. y , z >. .xb w <-> A. a e. V A. z e. ran F E* w <. ( F ` a ) , z >. .xb w ) ) |
| 85 | 78 84 | mpbird | |- ( ph -> A. y e. ran F A. z e. ran F E* w <. y , z >. .xb w ) |
| 86 | breq1 | |- ( x = <. y , z >. -> ( x .xb w <-> <. y , z >. .xb w ) ) |
|
| 87 | 86 | mobidv | |- ( x = <. y , z >. -> ( E* w x .xb w <-> E* w <. y , z >. .xb w ) ) |
| 88 | 87 | ralxp | |- ( A. x e. ( ran F X. ran F ) E* w x .xb w <-> A. y e. ran F A. z e. ran F E* w <. y , z >. .xb w ) |
| 89 | 85 88 | sylibr | |- ( ph -> A. x e. ( ran F X. ran F ) E* w x .xb w ) |
| 90 | ssralv | |- ( dom .xb C_ ( ran F X. ran F ) -> ( A. x e. ( ran F X. ran F ) E* w x .xb w -> A. x e. dom .xb E* w x .xb w ) ) |
|
| 91 | 39 89 90 | sylc | |- ( ph -> A. x e. dom .xb E* w x .xb w ) |
| 92 | dffun7 | |- ( Fun .xb <-> ( Rel .xb /\ A. x e. dom .xb E* w x .xb w ) ) |
|
| 93 | 14 91 92 | sylanbrc | |- ( ph -> Fun .xb ) |
| 94 | eqimss2 | |- ( .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } -> U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ .xb ) |
|
| 95 | 3 94 | syl | |- ( ph -> U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ .xb ) |
| 96 | iunss | |- ( U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ .xb <-> A. p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ .xb ) |
|
| 97 | 95 96 | sylib | |- ( ph -> A. p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ .xb ) |
| 98 | iunss | |- ( U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ .xb <-> A. q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ .xb ) |
|
| 99 | opex | |- <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. e. _V |
|
| 100 | 99 | snss | |- ( <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. e. .xb <-> { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ .xb ) |
| 101 | 4 5 | opeldm | |- ( <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. e. .xb -> <. ( F ` p ) , ( F ` q ) >. e. dom .xb ) |
| 102 | 100 101 | sylbir | |- ( { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ .xb -> <. ( F ` p ) , ( F ` q ) >. e. dom .xb ) |
| 103 | 102 | ralimi | |- ( A. q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ .xb -> A. q e. V <. ( F ` p ) , ( F ` q ) >. e. dom .xb ) |
| 104 | 98 103 | sylbi | |- ( U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ .xb -> A. q e. V <. ( F ` p ) , ( F ` q ) >. e. dom .xb ) |
| 105 | 104 | ralimi | |- ( A. p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } C_ .xb -> A. p e. V A. q e. V <. ( F ` p ) , ( F ` q ) >. e. dom .xb ) |
| 106 | 97 105 | syl | |- ( ph -> A. p e. V A. q e. V <. ( F ` p ) , ( F ` q ) >. e. dom .xb ) |
| 107 | opeq2 | |- ( z = ( F ` q ) -> <. ( F ` p ) , z >. = <. ( F ` p ) , ( F ` q ) >. ) |
|
| 108 | 107 | eleq1d | |- ( z = ( F ` q ) -> ( <. ( F ` p ) , z >. e. dom .xb <-> <. ( F ` p ) , ( F ` q ) >. e. dom .xb ) ) |
| 109 | 108 | ralrn | |- ( F Fn V -> ( A. z e. ran F <. ( F ` p ) , z >. e. dom .xb <-> A. q e. V <. ( F ` p ) , ( F ` q ) >. e. dom .xb ) ) |
| 110 | 71 109 | syl | |- ( ph -> ( A. z e. ran F <. ( F ` p ) , z >. e. dom .xb <-> A. q e. V <. ( F ` p ) , ( F ` q ) >. e. dom .xb ) ) |
| 111 | 110 | ralbidv | |- ( ph -> ( A. p e. V A. z e. ran F <. ( F ` p ) , z >. e. dom .xb <-> A. p e. V A. q e. V <. ( F ` p ) , ( F ` q ) >. e. dom .xb ) ) |
| 112 | 106 111 | mpbird | |- ( ph -> A. p e. V A. z e. ran F <. ( F ` p ) , z >. e. dom .xb ) |
| 113 | opeq1 | |- ( y = ( F ` p ) -> <. y , z >. = <. ( F ` p ) , z >. ) |
|
| 114 | 113 | eleq1d | |- ( y = ( F ` p ) -> ( <. y , z >. e. dom .xb <-> <. ( F ` p ) , z >. e. dom .xb ) ) |
| 115 | 114 | ralbidv | |- ( y = ( F ` p ) -> ( A. z e. ran F <. y , z >. e. dom .xb <-> A. z e. ran F <. ( F ` p ) , z >. e. dom .xb ) ) |
| 116 | 115 | ralrn | |- ( F Fn V -> ( A. y e. ran F A. z e. ran F <. y , z >. e. dom .xb <-> A. p e. V A. z e. ran F <. ( F ` p ) , z >. e. dom .xb ) ) |
| 117 | 71 116 | syl | |- ( ph -> ( A. y e. ran F A. z e. ran F <. y , z >. e. dom .xb <-> A. p e. V A. z e. ran F <. ( F ` p ) , z >. e. dom .xb ) ) |
| 118 | 112 117 | mpbird | |- ( ph -> A. y e. ran F A. z e. ran F <. y , z >. e. dom .xb ) |
| 119 | eleq1 | |- ( x = <. y , z >. -> ( x e. dom .xb <-> <. y , z >. e. dom .xb ) ) |
|
| 120 | 119 | ralxp | |- ( A. x e. ( ran F X. ran F ) x e. dom .xb <-> A. y e. ran F A. z e. ran F <. y , z >. e. dom .xb ) |
| 121 | 118 120 | sylibr | |- ( ph -> A. x e. ( ran F X. ran F ) x e. dom .xb ) |
| 122 | dfss3 | |- ( ( ran F X. ran F ) C_ dom .xb <-> A. x e. ( ran F X. ran F ) x e. dom .xb ) |
|
| 123 | 121 122 | sylibr | |- ( ph -> ( ran F X. ran F ) C_ dom .xb ) |
| 124 | 38 123 | eqsstrrd | |- ( ph -> ( B X. B ) C_ dom .xb ) |
| 125 | 35 124 | eqssd | |- ( ph -> dom .xb = ( B X. B ) ) |
| 126 | df-fn | |- ( .xb Fn ( B X. B ) <-> ( Fun .xb /\ dom .xb = ( B X. B ) ) ) |
|
| 127 | 93 125 126 | sylanbrc | |- ( ph -> .xb Fn ( B X. B ) ) |