This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasaddf.f | |- ( ph -> F : V -onto-> B ) |
|
| imasaddf.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
||
| imasaddflem.a | |- ( ph -> .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
||
| Assertion | imasaddvallem | |- ( ( ph /\ X e. V /\ Y e. V ) -> ( ( F ` X ) .xb ( F ` Y ) ) = ( F ` ( X .x. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasaddf.f | |- ( ph -> F : V -onto-> B ) |
|
| 2 | imasaddf.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
|
| 3 | imasaddflem.a | |- ( ph -> .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
|
| 4 | df-ov | |- ( ( F ` X ) .xb ( F ` Y ) ) = ( .xb ` <. ( F ` X ) , ( F ` Y ) >. ) |
|
| 5 | 1 2 3 | imasaddfnlem | |- ( ph -> .xb Fn ( B X. B ) ) |
| 6 | fnfun | |- ( .xb Fn ( B X. B ) -> Fun .xb ) |
|
| 7 | 5 6 | syl | |- ( ph -> Fun .xb ) |
| 8 | 7 | 3ad2ant1 | |- ( ( ph /\ X e. V /\ Y e. V ) -> Fun .xb ) |
| 9 | fveq2 | |- ( p = X -> ( F ` p ) = ( F ` X ) ) |
|
| 10 | 9 | opeq1d | |- ( p = X -> <. ( F ` p ) , ( F ` Y ) >. = <. ( F ` X ) , ( F ` Y ) >. ) |
| 11 | fvoveq1 | |- ( p = X -> ( F ` ( p .x. Y ) ) = ( F ` ( X .x. Y ) ) ) |
|
| 12 | 10 11 | opeq12d | |- ( p = X -> <. <. ( F ` p ) , ( F ` Y ) >. , ( F ` ( p .x. Y ) ) >. = <. <. ( F ` X ) , ( F ` Y ) >. , ( F ` ( X .x. Y ) ) >. ) |
| 13 | 12 | sneqd | |- ( p = X -> { <. <. ( F ` p ) , ( F ` Y ) >. , ( F ` ( p .x. Y ) ) >. } = { <. <. ( F ` X ) , ( F ` Y ) >. , ( F ` ( X .x. Y ) ) >. } ) |
| 14 | 13 | ssiun2s | |- ( X e. V -> { <. <. ( F ` X ) , ( F ` Y ) >. , ( F ` ( X .x. Y ) ) >. } C_ U_ p e. V { <. <. ( F ` p ) , ( F ` Y ) >. , ( F ` ( p .x. Y ) ) >. } ) |
| 15 | 14 | 3ad2ant2 | |- ( ( ph /\ X e. V /\ Y e. V ) -> { <. <. ( F ` X ) , ( F ` Y ) >. , ( F ` ( X .x. Y ) ) >. } C_ U_ p e. V { <. <. ( F ` p ) , ( F ` Y ) >. , ( F ` ( p .x. Y ) ) >. } ) |
| 16 | fveq2 | |- ( q = Y -> ( F ` q ) = ( F ` Y ) ) |
|
| 17 | 16 | opeq2d | |- ( q = Y -> <. ( F ` p ) , ( F ` q ) >. = <. ( F ` p ) , ( F ` Y ) >. ) |
| 18 | oveq2 | |- ( q = Y -> ( p .x. q ) = ( p .x. Y ) ) |
|
| 19 | 18 | fveq2d | |- ( q = Y -> ( F ` ( p .x. q ) ) = ( F ` ( p .x. Y ) ) ) |
| 20 | 17 19 | opeq12d | |- ( q = Y -> <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. = <. <. ( F ` p ) , ( F ` Y ) >. , ( F ` ( p .x. Y ) ) >. ) |
| 21 | 20 | sneqd | |- ( q = Y -> { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } = { <. <. ( F ` p ) , ( F ` Y ) >. , ( F ` ( p .x. Y ) ) >. } ) |
| 22 | 21 | ssiun2s | |- ( Y e. V -> { <. <. ( F ` p ) , ( F ` Y ) >. , ( F ` ( p .x. Y ) ) >. } C_ U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
| 23 | 22 | ralrimivw | |- ( Y e. V -> A. p e. V { <. <. ( F ` p ) , ( F ` Y ) >. , ( F ` ( p .x. Y ) ) >. } C_ U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
| 24 | ss2iun | |- ( A. p e. V { <. <. ( F ` p ) , ( F ` Y ) >. , ( F ` ( p .x. Y ) ) >. } C_ U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } -> U_ p e. V { <. <. ( F ` p ) , ( F ` Y ) >. , ( F ` ( p .x. Y ) ) >. } C_ U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
|
| 25 | 23 24 | syl | |- ( Y e. V -> U_ p e. V { <. <. ( F ` p ) , ( F ` Y ) >. , ( F ` ( p .x. Y ) ) >. } C_ U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
| 26 | 25 | 3ad2ant3 | |- ( ( ph /\ X e. V /\ Y e. V ) -> U_ p e. V { <. <. ( F ` p ) , ( F ` Y ) >. , ( F ` ( p .x. Y ) ) >. } C_ U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
| 27 | 15 26 | sstrd | |- ( ( ph /\ X e. V /\ Y e. V ) -> { <. <. ( F ` X ) , ( F ` Y ) >. , ( F ` ( X .x. Y ) ) >. } C_ U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
| 28 | 3 | 3ad2ant1 | |- ( ( ph /\ X e. V /\ Y e. V ) -> .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
| 29 | 27 28 | sseqtrrd | |- ( ( ph /\ X e. V /\ Y e. V ) -> { <. <. ( F ` X ) , ( F ` Y ) >. , ( F ` ( X .x. Y ) ) >. } C_ .xb ) |
| 30 | opex | |- <. <. ( F ` X ) , ( F ` Y ) >. , ( F ` ( X .x. Y ) ) >. e. _V |
|
| 31 | 30 | snss | |- ( <. <. ( F ` X ) , ( F ` Y ) >. , ( F ` ( X .x. Y ) ) >. e. .xb <-> { <. <. ( F ` X ) , ( F ` Y ) >. , ( F ` ( X .x. Y ) ) >. } C_ .xb ) |
| 32 | 29 31 | sylibr | |- ( ( ph /\ X e. V /\ Y e. V ) -> <. <. ( F ` X ) , ( F ` Y ) >. , ( F ` ( X .x. Y ) ) >. e. .xb ) |
| 33 | funopfv | |- ( Fun .xb -> ( <. <. ( F ` X ) , ( F ` Y ) >. , ( F ` ( X .x. Y ) ) >. e. .xb -> ( .xb ` <. ( F ` X ) , ( F ` Y ) >. ) = ( F ` ( X .x. Y ) ) ) ) |
|
| 34 | 8 32 33 | sylc | |- ( ( ph /\ X e. V /\ Y e. V ) -> ( .xb ` <. ( F ` X ) , ( F ` Y ) >. ) = ( F ` ( X .x. Y ) ) ) |
| 35 | 4 34 | eqtrid | |- ( ( ph /\ X e. V /\ Y e. V ) -> ( ( F ` X ) .xb ( F ` Y ) ) = ( F ` ( X .x. Y ) ) ) |