This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem for inferring "at most one". (Contributed by NM, 17-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mo2icl | |- ( A. x ( ph -> x = A ) -> E* x ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | |- ( y = A -> ( x = y <-> x = A ) ) |
|
| 2 | 1 | imbi2d | |- ( y = A -> ( ( ph -> x = y ) <-> ( ph -> x = A ) ) ) |
| 3 | 2 | albidv | |- ( y = A -> ( A. x ( ph -> x = y ) <-> A. x ( ph -> x = A ) ) ) |
| 4 | 3 | imbi1d | |- ( y = A -> ( ( A. x ( ph -> x = y ) -> E* x ph ) <-> ( A. x ( ph -> x = A ) -> E* x ph ) ) ) |
| 5 | equequ2 | |- ( y = z -> ( x = y <-> x = z ) ) |
|
| 6 | 5 | imbi2d | |- ( y = z -> ( ( ph -> x = y ) <-> ( ph -> x = z ) ) ) |
| 7 | 6 | albidv | |- ( y = z -> ( A. x ( ph -> x = y ) <-> A. x ( ph -> x = z ) ) ) |
| 8 | 7 | 19.8aw | |- ( A. x ( ph -> x = y ) -> E. y A. x ( ph -> x = y ) ) |
| 9 | df-mo | |- ( E* x ph <-> E. y A. x ( ph -> x = y ) ) |
|
| 10 | 8 9 | sylibr | |- ( A. x ( ph -> x = y ) -> E* x ph ) |
| 11 | 4 10 | vtoclg | |- ( A e. _V -> ( A. x ( ph -> x = A ) -> E* x ph ) ) |
| 12 | eqvisset | |- ( x = A -> A e. _V ) |
|
| 13 | 12 | imim2i | |- ( ( ph -> x = A ) -> ( ph -> A e. _V ) ) |
| 14 | 13 | con3rr3 | |- ( -. A e. _V -> ( ( ph -> x = A ) -> -. ph ) ) |
| 15 | 14 | alimdv | |- ( -. A e. _V -> ( A. x ( ph -> x = A ) -> A. x -. ph ) ) |
| 16 | alnex | |- ( A. x -. ph <-> -. E. x ph ) |
|
| 17 | nexmo | |- ( -. E. x ph -> E* x ph ) |
|
| 18 | 16 17 | sylbi | |- ( A. x -. ph -> E* x ph ) |
| 19 | 15 18 | syl6 | |- ( -. A e. _V -> ( A. x ( ph -> x = A ) -> E* x ph ) ) |
| 20 | 11 19 | pm2.61i | |- ( A. x ( ph -> x = A ) -> E* x ph ) |